12 research outputs found
Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer's disease neurons
In addition to increased aberrant protein aggregation, inflammation has been proposed as a key element in the pathogenesis and progression of Alzheimer’s disease. How inflammation interacts with other disease pathways and how protein aggregation increases during disease are not clear. We used single-molecule imaging approaches and membrane permeabilization assays to determine the effect of chronic exposure to tumour necrosis factor, a master proinflammatory cytokine, on protein aggregation in human-induced pluripotent stem cell-derived neurons harbouring monogenic Alzheimer’s disease mutations. We report that exposure of Alzheimer’s disease neurons, but not control neurons, to tumour necrosis factor induces substantial production of extracellular protein aggregates. Aggregates from Alzheimer’s disease neurons are composed of amyloid-β and α-synuclein and induce significant permeabilization of lipid membranes in an assay of pathogenicity. These findings provide support for a causal relationship between two crucial processes in Alzheimer’s disease pathogenesis and suggest that targeting inflammation, particularly tumour necrosis factor, may have beneficial downstream effects on ameliorating aberrant protein aggregation and accumulation
Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease
Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP) processing and the accumulation of APP-derived amyloid β (Aβ) peptides are key processes in Alzheimer's disease (AD). We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation.P.W.B. received funding through the Alborada Trust's support of the Alzheimer's Research UK Stem Cell Research Centre. J.S. was supported by the Innovative Medicines Initiative Consortium, StemBANCC (grant no, 115439 ). H.Z. was supported by the Swedish Research Council (grant no: 2013-2546 ) and the European Research Council (grant no: 681712 ). F.J.L. is a Wellcome Trust Senior Investigator (grant no. 101052/2/13/2 ) and gratefully acknowledges the support of the Alborada Trust and Alzheimer's Research UK (grant no. ARUK-SCRC 2014-1 ). Research in the Gurdon Institute benefits from core support from the Wellcome Trust and Cancer Research UK
CRISPR-based functional genomics for neurological disease
Neurodegenerative, neurodevelopmental and neuropsychiatric disorders are among the greatest public health challenges, as many lack disease-modifying treatments. A major reason for the absence of effective therapies is our limited understanding of the causative molecular and cellular mechanisms. Genome-wide association studies are providing a growing catalogue of disease-associated genetic variants, and the next challenge is to elucidate how these variants cause disease and to translate this understanding into therapies. This Review describes how new CRISPR-based functional genomics approaches can uncover disease mechanisms and therapeutic targets in neurological diseases. The bacterial CRISPR system can be used in experimental disease models to edit genomes and to control gene expression levels through CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa). These genetic perturbations can be implemented in massively parallel genetic screens to evaluate the functional consequences for human cells. CRISPR screens are particularly powerful in combination with induced pluripotent stem cell technology, which enables the derivation of differentiated cell types, such as neurons and glia, and brain organoids from cells obtained from patients. Modelling of disease-associated changes in gene expression via CRISPRi and CRISPRa can pinpoint causal changes. In addition, genetic modifier screens can be used to elucidate disease mechanisms and causal determinants of cell type-selective vulnerability and to identify therapeutic targets
Amyloid-β-independent regulators of tau pathology in Alzheimer disease
The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aβ plaque deposition precedes cortical tau pathology. Because Aβ accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aβ from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aβ accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aβ-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aβ-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aβ and tau