14 research outputs found

    Network integration meets network dynamics

    Get PDF
    Molecular interaction networks provide a window on the workings of the cell. However, combining various types of networks into one coherent large-scale dynamic model remains a formidable challenge. A recent paper in BMC Systems Biology describes a promising step in this direction

    Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks

    Get PDF
    The idea of 'date' and 'party' hubs has been influential in the study of protein-protein interaction networks. Date hubs display low co-expression with their partners, whilst party hubs have high co-expression. It was proposed that party hubs are local coordinators whereas date hubs are global connectors. Here we show that the reported importance of date hubs to network connectivity can in fact be attributed to a tiny subset of them. Crucially, these few, extremely central, hubs do not display particularly low expression correlation, undermining the idea of a link between this quantity and hub function. The date/party distinction was originally motivated by an approximately bimodal distribution of hub co-expression; we show that this feature is not always robust to methodological changes. Additionally, topological properties of hubs do not in general correlate with co-expression. Thus, we suggest that a date/party dichotomy is not meaningful and it might be more useful to conceive of roles for protein-protein interactions rather than individual proteins. We find significant correlations between interaction centrality and the functional similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure

    Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of potentially relevant biomarkers and a deeper understanding of molecular mechanisms related to heart failure (HF) development can be enhanced by the implementation of biological network-based analyses. To support these efforts, here we report a global network of protein-protein interactions (PPIs) relevant to HF, which was characterized through integrative bioinformatic analyses of multiple sources of "omic" information.</p> <p>Results</p> <p>We found that the structural and functional architecture of this PPI network is highly modular. These network modules can be assigned to specialized processes, specific cellular regions and their functional roles tend to partially overlap. Our results suggest that HF biomarkers may be defined as key coordinators of intra- and inter-module communication. Putative biomarkers can, in general, be distinguished as "information traffic" mediators within this network. The top high traffic proteins are encoded by genes that are not highly differentially expressed across HF and non-HF patients. Nevertheless, we present evidence that the integration of expression patterns from high traffic genes may support accurate prediction of HF. We quantitatively demonstrate that intra- and inter-module functional activity may be controlled by a family of transcription factors known to be associated with the prevention of hypertrophy.</p> <p>Conclusion</p> <p>The systems-driven analysis reported here provides the basis for the identification of potentially novel biomarkers and understanding HF-related mechanisms in a more comprehensive and integrated way.</p

    Identifying Causal Genes and Dysregulated Pathways in Complex Diseases

    Get PDF
    In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role

    Investigating the validity of current network analysis on static conglomerate networks by protein network stratification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A molecular network perspective forms the foundation of systems biology. A common practice in analyzing protein-protein interaction (PPI) networks is to perform network analysis on a conglomerate network that is an assembly of all available binary interactions in a given organism from diverse data sources. Recent studies on network dynamics suggested that this approach might have ignored the dynamic nature of context-dependent molecular systems.</p> <p>Results</p> <p>In this study, we employed a network stratification strategy to investigate the validity of the current network analysis on conglomerate PPI networks. Using the genome-scale tissue- and condition-specific proteomics data in <it>Arabidopsis thaliana</it>, we present here the first systematic investigation into this question. We stratified a conglomerate <it>A. thaliana </it>PPI network into three levels of context-dependent subnetworks. We then focused on three types of most commonly conducted network analyses, i.e., topological, functional and modular analyses, and compared the results from these network analyses on the conglomerate network and five stratified context-dependent subnetworks corresponding to specific tissues.</p> <p>Conclusions</p> <p>We found that the results based on the conglomerate PPI network are often significantly different from those of context-dependent subnetworks corresponding to specific tissues or conditions. This conclusion depends neither on relatively arbitrary cutoffs (such as those defining network hubs or bottlenecks), nor on specific network clustering algorithms for module extraction, nor on the possible high false positive rates of binary interactions in PPI networks. We also found that our conclusions are likely to be valid in human PPI networks. Furthermore, network stratification may help resolve many controversies in current research of systems biology.</p

    Essentiality and centrality in protein interaction networks revisited

    No full text
    BACKGROUND: Minimum dominating sets (MDSet) of protein interaction networks allow the control of underlying protein interaction networks through their topological placement. While essential proteins are enriched in MDSets, we hypothesize that the statistical properties of biological functions of essential genes are enhanced when we focus on essential MDSet proteins (e-MDSet). RESULTS: Here, we determined minimum dominating sets of proteins (MDSet) in interaction networks of E. coli, S. cerevisiae and H. sapiens, defined as subsets of proteins whereby each remaining protein can be reached by a single interaction. We compared several topological and functional parameters of essential, MDSet, and essential MDSet (e-MDSet) proteins. In particular, we observed that their topological placement allowed e-MDSet proteins to provide a positive correlation between degree and lethality, connect more protein complexes, and have a stronger impact on network resilience than essential proteins alone. In comparison to essential proteins we further found that interactions between e-MDSet proteins appeared more frequently within complexes, while interactions of e-MDSet proteins between complexes were depleted. Finally, these e-MDSet proteins classified into functional groupings that play a central role in survival and adaptability. CONCLUSIONS: The determination of e-MDSet of an organism highlights a set of proteins that enhances the enrichment signals of biological functions of essential proteins. As a consequence, we surmise that e-MDSets may provide a new method of evaluating the core proteins of an organism
    corecore