27 research outputs found

    A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities.</p> <p>Results</p> <p>Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The V<sub>max</sub>/K<sub>m </sub>values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity.</p> <p>Conclusion</p> <p>A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.</p

    Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    Get PDF
    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy

    β-Fructofuranosidase production by repeated batch fermentation with immobilized Aspergillus japonicus

    No full text
    The fungus Aspergillus japonicus ATCC 20236 was immobilized in vegetal fiber and used in repeated batch fermentations of sucrose (200 g/l) for the production of β-fructofuranosidases (FFase). The assays were performed during eight consecutive cycles that were completed in a total period of 216 h. After each 24-h cycle of fermentation (except for the first cycle, which lasted 48 h), the fermented broth was replaced by fresh medium, and the FFase activity was determined in the replaced medium. The average value of FFase activity was a constant 40.6 U/ml at the end of the initial seven cycles, but had decreased by 22% at the end of the eighth cycle. Concurrent with these high and constant FFase values, the hydrolyzing activity of this enzyme increased during the cycles, while the transfructosylating activity decreased. As a consequence, the maximum production of fructooligosaccharides of 134.60 g/l observed in the initial 30 h of fermentation (first cycle) had gradually decreased by the end of the subsequent cycles, reaching approximately 23% of this value during cycles 4–8. Based on these results, we conclude that the present immobilization system has a great potential for application in a semi-continuous process for the production of FFase, but further studies are necessary to maintain the FFase transfructosylation activity at high levels during the overall process.The financial support from FCT, the Portuguese Foundation for Science and Technology (research project SFRH/BPD/38212/2007) is gratefully acknowledged
    corecore