929 research outputs found

    Mapping Hydrogen in the Galaxy, Galactic Halo, and Local Group with ALFA: The GALFA-HI Survey Starting with TOGS

    Full text link
    Radio observations of gas in the Milky Way and Local Group are vital for understanding how galaxies function as systems. The unique sensitivity of Arecibo's 305m dish, coupled with the 7-beam Arecibo L-Band Feed Array (ALFA), provides an unparalleled tool for investigating the full range of interstellar phenomena traced by the HI 21cm line. The GALFA (Galactic ALFA) HI Survey is mapping the entire Arecibo sky over a velocity range of -700 to +700 km/s with 0.2 km/s velocity channels and an angular resolution of 3.4 arcminutes. We present highlights from the TOGS (Turn on GALFA Survey) portion of GALFA-HI, which is covering thousands of square degrees in commensal drift scan observations with the ALFALFA and AGES extragalactic ALFA surveys. This work is supported in part by the National Astronomy and Ionosphere Center, operated by Cornell University under cooperative agreement with the National Science Foundation.Comment: 3 pages, including 2 figure pages; figure image quality significantly reduced; for full resolution version, please see http://www.naic.edu/~gibson/cv/ao08_writeup.pdf ; to be published in AIP conference proceedings for ``The Evolution of Galaxies through the Neutral Hydrogen Window'', eds. R. Minchin & E. Momjia

    Reconstructing Deconstruction: High-Velocity Cloud Distance Through Disruption Morphology

    Full text link
    We present Arecibo L-band Feed Array 21-cm observations of a sub-complex of HVCs at the tip of the Anti-Center Complex. These observations show morphological details that point to interaction with the ambient halo medium and differential drag within the cloud sub-complex. We develop a new technique for measuring cloud distances, which relies upon these observed morphological and kinematic characteristics, and show that it is consistent with H-alpha distances. These results are consistent with distances to HVCs and halo densities derived from models in which HVCs are formed from cooling halo gas.Comment: 8 pages, 2 figures, 1 tabe, Accepted to Ap

    Ongoing Galactic Accretion: Simulations and Observations of Condensed Gas in Hot Halos

    Full text link
    Ongoing accretion onto galactic disks has been recently theorized to progress via the unstable cooling of the baryonic halo into condensed clouds. These clouds have been identified as analogous to the High-Velocity Clouds (HVCs) observed in HI in our Galaxy. Here we compare the distribution of HVCs observed around our own Galaxy and extra-planar gas around the Andromeda galaxy to these possible HVC analogs in a simulation of galaxy formation that naturally generates these condensed clouds. We find a very good correspondence between these observations and the simulation, in terms of number, angular size, velocity distribution, overall flux and flux distribution of the clouds. We show that condensed cloud accretion only accounts for ~ 0.2 M_solar / year of the current overall Galactic accretion in the simulations. We also find that the simulated halo clouds accelerate and become more massive as they fall toward the disk. The parameter space of the simulated clouds is consistent with all of the observed HVC complexes that have distance constraints, except the Magellanic Stream which is known to have a different origin. We also find that nearly half of these simulated halo clouds would be indistinguishable from lower-velocity gas and that this effect is strongest further from the disk of the galaxy, thus indicating a possible missing population of HVCs. These results indicate that the majority of HVCs are consistent with being infalling, condensed clouds that are a remnant of Galaxy formation.Comment: 10 pages, 6 figures, ApJ Accepted. Some changes to techniqu

    Are Compact High-Velocity Clouds Extragalactic Objects?

    Get PDF
    Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the Local Group model and would have HI volume densities of order 0.0003/cm^3. Clouds with these volume densities and the observed neutral hydrogen column densities will be largely ionized, even if exposed only to the extragalactic ionizing radiation field. Here we examine the implications of this process for models of CHVCs. We have modeled the ionization structure of spherical clouds (with and without dark matter halos) for a large range of densities and sizes, appropriate to CHVCs over the range of suggested distances, exposed to the extragalactic ionizing photon flux. Constant-density cloud models in which the CHVCs are at Local Group distances have total (ionized plus neutral) gas masses roughly 20-30 times larger than the neutral gas masses, implying that the gas mass alone of the observed population of CHVCs is about 40 billion solar masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass in such CHVCs is a significant fraction of the dynamical mass of the Local Group, and their line widths would exceed the observed FWHM. Models with dark matter halos fare even more poorly; they must lie within approximately 200 kpc of the Galaxy. We show that exponential neutral hydrogen column density profiles are a natural consequence of an external source of ionizing photons, and argue that these profiles cannot be used to derive model-independent distances to the CHVCs. These results argue strongly that the CHVCs are not cosmological objects, and are instead associated with the Galactic halo.Comment: 30 pages, 14 figures; to appear in The Astrophysical Journa

    The Metal-Enriched Outer Disk of NGC 2915

    Full text link
    We present optical emission-line spectra for outlying HII regions in the extended neutral gas disk surrounding the blue compact dwarf galaxy NGC 2915. Using a combination of strong-line R23 and direct oxygen abundance measurements, we report a flat, possibly increasing, metallicity gradient out to 1.2 times the Holmberg radius. We find the outer-disk of NGC 2915 to be enriched to a metallicity of 0.4 Z_solar. An analysis of the metal yields shows that the outer disk of NGC 2915 is overabundant for its gas fraction, while the central star-foming core is similarly under-abundant for its gas fraction. Star formation rates derived from very deep ~14 ks GALEX FUV exposures indicate that the low-level of star formation observed at large radii is not sufficient to have produced the measured oxygen abundances at these galactocentric distances. We consider 3 plausible mechanisms that may explain the metal-enriched outer gaseous disk of NGC 2915: radial redistribution of centrally generated metals, strong galactic winds with subsequent fallback, and galaxy accretion. Our results have implications for the physical origin of the mass-metallicity relation for gas-rich dwarf galaxies.Comment: 11 pages, 4 figures, accepted to ApJ April 8th, 201
    corecore