1,638 research outputs found
Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer
Wenwu Xiao1, Juntao Luo2, Teesta Jain3, John Riggs3, Harry P Tseng1, Paul T Henderson3, Simon R Cherry4, Douglas Rowland4, Kit S Lam1,31Department of Biochemistry and Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA; 2Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY; 3Department of Internal Medicine, Division of Hematology and Oncology, 4Department of Biomedical Engineering, UC Davis Cancer Center, University of California Davis, Davis, CABackground: A multifunctional telodendrimer-based micelle system was characterized for delivery of imaging and chemotherapy agents to mouse tumor xenografts. Previous optical imaging studies demonstrated qualitatively that these classes of nanoparticles, called nanomicelles, preferentially accumulate at tumor sites in mice. The research reported herein describes the detailed quantitative imaging and biodistribution profiling of nanomicelles loaded with a cargo of paclitaxel.Methods: The telodendrimer was covalently labeled with 125I and the nanomicelles were loaded with 14C-paclitaxel, which allowed measurement of pharmacokinetics and biodistribution in the mice using microSPECT/CT imaging and liquid scintillation counting, respectively.Results: The radio imaging data showed preferential accumulation of nanomicelles at the tumor site along with a slower clearance rate than paclitaxel formulated in Cremophor EL (Taxol®). Liquid scintillation counting confirmed that 14C-labeled paclitaxel sequestered in nanomicelles had increased uptake by tumor tissue and slower pharmacokinetics than Taxol.Conclusion: Overall, the results indicate that nanomicelle-formulated paclitaxel is a potentially superior formulation compared with Taxol in terms of water solubility, pharmacokinetics, and tumor accumulation, and may be clinically useful for both tumor imaging and improved chemotherapy applications.Keywords: telodendrimer, nanomicelle, paclitaxel, microSPECT/CT, imaging guided drug deliver
EIT and diffusion of atomic coherence
We study experimentally the effect of diffusion of Rb atoms on
Electromagnetically Induced Transparency (EIT) in a buffer gas vapor cell. In
particular, we find that diffusion of atomic coherence in-and-out of the laser
beam plays a crucial role in determining the EIT resonance lineshape and the
stored light lifetime.Comment: 5 pages, 8 figure
Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda
Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions
Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis
Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain. © 2014 Macmillan Publishers Limited. All rights reserved
Neuroendocrine (Merkel cell) carcinoma of the retroperitoneum with no identifiable primary site
<p>Abstract</p> <p>Background</p> <p>Neuroendocrine carcinoma is an aggressive neoplasm that mainly affects elderly Caucasians and typically arises in sun-exposed areas of the skin. The disease is rather rare and only a relatively few cases present with no apparent primary lesion.</p> <p>Case presentation</p> <p>We report a case of an 81-year-old Caucasian male with neuroendocrine carcinoma, which initially presented as a large retroperitoneal mass. Pathological and immunohistochemical analysis of the transabdominal CT-guided biopsy specimen revealed tissue consistent with neuroendocrine carcinoma. The patient underwent exploratory laparotomy and the mass was successfully excised along with an associated mesenteric lymph node.</p> <p>Discussion</p> <p>There are currently two possible explanations for what occurred in our patient. First, the retroperitoneal mass could be a massively enlarged lymph node where precursor cells became neoplastic. This would be consistent with a presumptive diagnosis of primary nodal disease. Alternatively, an initial skin lesion could have spontaneously regressed and the retroperitoneal mass represents a single site of metastasis. Since Merkel cell precursors have never been identified within lymph nodes, the latter theory seems more befitting. Moreover, metastasis to the retroperitoneal lymph nodes has been reported as relatively common when compared to other sites such as liver, bone, brain and skin.</p> <p>Conclusion</p> <p>Wide local excision of the primary tumor is the surgical treatment of choice for localized disease. We propose that further studies are needed to elucidate the true efficacy of chemotherapy in conventional as well as unconventional patients with neuroendocrine carcinoma.</p
Prevention of Ocular Scarring Post Glaucoma Filtration Surgery Using the Inflammatory Cell and Platelet Binding Modulator Saratin in a Rabbit Model
Clinical Relevance: Late complications can occur with use of current antimetabolites to prevent scarring following glaucoma filtration surgery (GFS). Safer, more targeted, anti-fibrosis agents are sought. Objectives: The protein saratin has been shown to exhibit anti-fibrotic and anti-thrombotic properties in response to injury, but had not been used for glaucoma surgery. The goal of this study was to compare the efficacy of saratin with that of the widely accepted mitomycin-C (MMC) in prolonging bleb survival following GFS in the rabbit model. Two saratin delivery routes were compared; a single intraoperative topical application versus a combination of intraoperative topical application with two additional postoperative injections. Methods: Twenty-four New Zealand White rabbits underwent GFS and received either intraoperative topical saratin, intraoperative topical saratin plus two injections on post-operative days 4 and 8, balanced saline solution (BSS), or MMC. The bleb tissues and their elevation durations were compared based on clinical and histological findings. Results: Rabbits receiving topical+injections of saratin had a mean bleb survival of 33.668.5 days, significantly higher than the negative BSS controls, which averaged 17.466.0 days (p = 0.018). No improvement over BSS was seen for rabbits receiving topical saratin only (15.564.8 days, p = 0.749). Rabbits receiving saratin did not develop bleb avascularity and thinning associated with MMC treatment and there were no apparent clinical signs of toxicity
Systematic gene function prediction from gene expression data by using a fuzzy nearest-cluster method
BACKGROUND: Quantitative simultaneous monitoring of the expression levels of thousands of genes under various experimental conditions is now possible using microarray experiments. However, there are still gaps toward whole-genome functional annotation of genes using the gene expression data. RESULTS: In this paper, we propose a novel technique called Fuzzy Nearest Clusters for genome-wide functional annotation of unclassified genes. The technique consists of two steps: an initial hierarchical clustering step to detect homogeneous co-expressed gene subgroups or clusters in each possibly heterogeneous functional class; followed by a classification step to predict the functional roles of the unclassified genes based on their corresponding similarities to the detected functional clusters. CONCLUSION: Our experimental results with yeast gene expression data showed that the proposed method can accurately predict the genes' functions, even those with multiple functional roles, and the prediction performance is most independent of the underlying heterogeneity of the complex functional classes, as compared to the other conventional gene function prediction approaches
Epidemiology of invasive group B streptococcal disease in infants from urban area of South China, 2011–2014
YesBackground: Group B Streptococcus (GBS) is a leading cause of morbidity and mortality in infants in both
developed and developing countries. To our knowledge, only a few studies have been reported the clinical
features, treatment and outcomes of the GBS disease in China. The severity of neonatal GBS disease in China
remains unclear. Population-based surveillance in China is therefore required.
Methods: We retrospectively collected data of <3 months old infants with culture-positive GBS in sterile samples
from three large urban tertiary hospitals in South China from Jan 2011 to Dec 2014. The GBS isolates and their
antibiotic susceptibility were routinely identified in clinical laboratories in participating hospitals. Serotyping and
multi-locus sequence typing (MLST) were also conducted for further analysis of the neonatal GBS disease.
Results: Total 70 cases of culture-confirmed invasive GBS infection were identified from 127,206 live births born in
studying hospitals, giving an overall incidence of 0.55 per 1000 live births (95% confidence interval [CI] 0.44–0.69).
They consisted of 49 with early-onset disease (EOD, 0.39 per 1000 live births (95% CI 0.29–0.51)) and 21 with
late-onset disease (LOD, 0.17 per 1000 live births (95% CI 0.11–0.25)). The incidence of EOD increased significantly over
the studying period. Five infants (4 EOD and 1 LOD) died before discharge giving a mortality rate of 7.1% and five
infants (7.1%, 2 EOD and 3 LOD) had neurological sequelae. Within 68 GBS isolates from GBS cases who born in the
studying hospitals or elsewhere, serotype III accounted for 77.9%, followed by Ib (14.7%), V (4.4%), and Ia (2.9%). MLST
analysis revealed the presence of 13 different sequence types among the 68 GBS isolates and ST-17 was the most
frequent sequence type (63.2%). All isolates were susceptible to penicillin, ceftriaxone, vancomycin and linezolid, while
57.4% and 51.5% were resistant to erythromycin and clindamycin, respectively.
Conclusions: This study gains the insight into the spectrum of GBS infection in south China which will facilitate the
development of the guidance for reasonable antibiotics usage and will provide evidence for the implementation of
potential GBS vaccines in the future.Supported by medical and health science and technology projects of Health and Family Planning Commission of Guangzhou Municipality (grant number 20151A010034) and Guangdong provincial science and technology planning projects (grant number 2014A020212520)
- …