37 research outputs found

    Satellite comparison of the seasonal circulation in the Benguela and California current systems

    Get PDF
    Satellite surface height and surface temperature fields are used to examine the seasonal surface circulation in the Benguela and California Current systems. In the California Current system, an equatorward jet develops in spring and summer near to the coast, with a latitudinal structure that responds to the equatorward longshore winds. This jet moves offshore from spring to autumn and contributes eddy kinetic energy to the deep ocean. In the Benguela system north of 32°S, winds are upwelling-favourable and currents are equatorward all year, but stronger in summer. The current strengthens in summer, when water parcels with high steric heights move intothe region offshore of the jet from the Agulhas Retroflection area at the same time that steric heights next to the coast drop as a result of coastal upwelling. Off the Cape (32–34°S), winds and currents are more seasonal. TheGeosat altimeter fields do not resolve the equatorward flow along the SST front next to the coast in spring and summer, but pick up strong equatorward flow off the Cape in autumn and winter, after the front moves offshore

    Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current upwelling system)

    Get PDF
    The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m-2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m-2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H', Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-mzone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system

    Morphological brain differences between adult stutterers and non-stutterers

    Get PDF
    BACKGROUND: The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS) are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. METHODS: Adults with PDS (n = 10) and controls (n = 10) matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM) the brains of stutterers and non-stutterers were compared with respect to white matter (WM) and grey matter (GM) differences. RESULTS: We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars triangularis), the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. CONCLUSIONS: These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question

    Satellite comparison of the seasonal circulation in the Benguela and California current systems

    No full text
    Satellite surface height and surface temperature fields are used to examine the seasonal surface circulation in the Benguela and California Current systems. In the California Current system, an equatorward jet develops in spring and summer near to the coast, with a latitudinal structure that responds to the equatorward longshore winds. This jet moves offshore from spring to autumn and contributes eddy kinetic energy to the deep ocean. In the Benguela system north of 32 degreesS, winds are upwelling-favourable and currents are equatorward all year, but stronger in summer. The current strengthens in summer, when water parcels with high steric heights move into the region offshore of the jet from the Agulhas Retroflection area at the same time that steric heights next to the coast drop as a result of coastal upwelling. Off the Cape (32-34 degreesS), winds and currents are more seasonal. The Geosat altimeter fields do not resolve the equatorward flow along the SST front next to the coast in spring and summer, but Dick up strong equatorward flow off the Cape in autumn and winter, after the front moves offshore
    corecore