101 research outputs found

    Association of sperm-associated antigen 5 and treatment response in patients With estrogen receptor–positive breast cancer

    Get PDF
    Importance: There is no proven test that can guide the optimal treatment, either endocrine therapy or chemotherapy, for estrogen receptor–positive breast cancer. Objective: To investigate the associations of sperm-associated antigen 5 (SPAG5) transcript and SPAG5 protein expressions with treatment response in systemic therapy for estrogen receptor–positive breast cancer. Design, Settings, and Participants: This retrospective cohort study included patients with estrogen receptor–positive breast cancer who received 5 years of adjuvant endocrine therapy with or without neoadjuvant anthracycline-based combination chemotherapy (NACT) derived from 11 cohorts from December 1, 1986, to November 28, 2019. The associations of SPAG5 transcript and SPAG5 protein expression with pathological complete response to NACT were evaluated, as was the association of SPAG5 mRNA expression with response to neoadjuvant endocrine therapy. The associations of distal relapse–free survival with SPAG5 transcript or SPAG5 protein expressions were analyzed. Data were analyzed from September 9, 2015, to November 28, 2019. Main Outcomes and Measures: The primary outcomes were breast cancer–specific survival, distal relapse–free survival, pathological complete response, and clinical response. Outcomes were examined using Kaplan-Meier, multivariable logistic, and Cox regression models. Results: This study included 12 720 women aged 24 to 78 years (mean [SD] age, 58.46 [12.45] years) with estrogen receptor–positive breast cancer, including 1073 women with SPAG5 transcript expression and 361 women with SPAG5 protein expression of locally advanced disease stage IIA through IIIC. Women with SPAG5 transcript and SPAG5 protein expressions achieved higher pathological complete response compared with those without SPAG5 transcript or SPAG5 protein expressions (transcript: odds ratio, 2.45 [95% CI, 1.71-3.51]; P < .001; protein: odds ratio, 7.32 [95% CI, 3.33-16.22]; P < .001). Adding adjuvant anthracycline chemotherapy to adjuvant endocrine therapy for SPAG5 mRNA expression in estrogen receptor–positive breast cancer was associated with prolonged 5-year distal relapse–free survival in patients without lymph node involvement (hazard ratio, 0.34 [95% CI, 0.14-0.87]; P = .03) and patients with lymph node involvement (hazard ratio, 0.35 [95% CI, 0.18-0.68]; P = .002) compared with receiving 5-year endocrine therapy alone. Mean (SD) SPAG5 transcript was found to be downregulated after 2 weeks of neoadjuvant endocrine therapy compared with pretreatment levels in 68 of 92 patients (74%) (0.23 [0.18] vs 0.34 [0.24]; P < .001). Conclusions and Relevance: These findings suggest that SPAG5 transcript and SPAG5 protein expressions could be used to guide the optimal therapies for estrogen receptor–positive breast cancer. Retrospective and prospective clinical trials are warranted

    Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays

    Get PDF
    We report a novel method for fabricating a highly sensitive chemical sensor based on a ZnO nanorod array that is epitaxially grown on a Pt-coated Si substrate, with a top–top electrode configuration. To practically test the device, its O2 and NO2 sensing properties were investigated. The gas sensing properties of this type of device suggest that the approach is promising for the fabrication of sensitive and reliable nanorod chemical sensors

    Regulation of Fission Yeast Morphogenesis by PP2A Activator pta2

    Get PDF
    Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to the cell ends, the Cdc42 GTPase polarizes secretion via actin-dependent delivery and tethering of secretory vesicles to plasma membrane. How growth is restricted to cell tips and how re-initiation of tip growth is regulated in the cell cycle remains poorly understood. In this work we investigated the function of protein phosphatase type 2A (PP2A) in S. pombe morphogenesis by deleting the evolutionary conserved PTPA-type regulatory subunit that we named pta2. pta2-deleted cells showed morphological defects and altered growth pattern. Consistent with this, actin patches and active Cdc42 were mislocalized in the pta2 deletion. These defects were additive to the lack of Cdc42-GAP Rga4. pta2Δ cells show upregulated Cdc42 activity and pta2 interacts genetically with polarisome components Tea1, Tea4 and For3 leading to complete loss of cell polarity and rounded morphology. Thus, regulation of polarity by PP2A requires the polarisome and involves Pta2-dependent control of Cdc42 activity

    Sol-gel derived mesoporous Pt and Cr-doped WO(3) thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties

    Get PDF
    Mesoporous Cr or Pt-doped WO(3) thin films to be employed as ammonia gas sensors were prepared by a fast one-step sol-gel procedure, based on the use of triblock copolymer as templating agent. The obtained films were constituted by aggregates of interconnected WO(3) nanocrystals (20-50 nm) separated by mesopores with dimensions ranging between 2 and 15 nm. The doping metals, Pt and Cr, resulted differently hosted in the WO(3) mesoporous matrix. Chromium is homogeneously dispersed in the oxide matrix, mainly as Cr(III) and Cr(V) centers, as revealed by EPR spectroscopy; instead platinum segregated as Pt (0) nanoparticles (4 nm) mainly included inside the WO(3) nanocrystals. The semiconductor layers containing Pt nanoclusters revealed, upon exposure to NH(3), remarkable electrical responses, much higher than Cr-doped and undoped layers, particularly at low ammonia concentration (6.2 ppm). This behavior was attributed to the presence of Pt nanoparticles segregated inside the semiconductor matrix, which act as catalysts of the N-H bond cleavage, decreasing the activation barrier in the ammonia dissociation. The role of the mesoporous structure in influencing the chemisorption and the gas diffusion in the WO(3) matrix appeared less decisive than the electronic differences between the two examined doping metals. The overall results suggest that a careful combination between mesoporous architecture and metal doping can really promote the electrical response of WO(3) toward ammonia

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore