69 research outputs found

    The Formin-Homology Protein SmDia Interacts with the Src Kinase SmTK and the GTPase SmRho1 in the Gonads of Schistosoma mansoni

    Get PDF
    BACKGROUND:Schistosomiasis (bilharzia) is a parasitic disease of worldwide significance affecting human and animals. As schistosome eggs are responsible for pathogenesis, the understanding of processes controlling gonad development might open new perspectives for intervention. The Src-like tyrosine-kinase SmTK3 of Schistosoma mansoni is expressed in the gonads, and its pharmacological inhibition reduces mitogenic activity and egg production in paired females in vitro. Since Src kinases are important signal transduction proteins it is of interest to unravel the signaling cascades SmTK3 is involved in to understand its cellular role in the gonads. METHODOLOGY AND RESULTS:Towards this end we established and screened a yeast two-hybrid (Y2H) cDNA library of adult S. mansoni with a bait construct encoding the SH3 (src homology) domain and unique site of SmTK3. Among the binding partners found was a diaphanous homolog (SmDia), which was characterized further. SmDia is a single-copy gene transcribed throughout development with a bias towards male transcription. Its deduced amino acid sequence reveals all diaphanous-characteristic functional domains. Binding studies with truncated SmDia clones identified SmTK3 interaction sites demonstrating that maximal binding efficiency depends on the N-terminal part of the FH1 (formin homology) domain and the inter-domain region of SmDia located upstream of FH1 in combination with the unique site and the SH3 domain of SmTK3, respectively. SmDia also directly interacted with the GTPase SmRho1 of S. mansoni. In situ hybridization experiments finally demonstrated that SmDia, SmRho1, and SmTK3 are transcribed in the gonads of both genders. CONCLUSION:These data provide first evidence for the existence of two cooperating pathways involving Rho and Src that bridge at SmDia probably organizing cytoskeletal events in the reproductive organs of a parasite, and beyond that in gonads of eukaryotes. Furthermore, the FH1 and inter domain region of SmDia have been discovered as binding sites for the SH3 and unique site domains of SmTK3, respectively

    Role of the Endogenous Antioxidant System in the Protection of Schistosoma mansoni Primary Sporocysts against Exogenous Oxidative Stress

    Get PDF
    Antioxidants produced by the parasite Schistosoma mansoni are believed to be involved in the maintenance of cellular redox balance, thus contributing to larval survival in their intermediate snail host, Biomphalaria glabrata. Here, we focused on specific antioxidant enzymes, including glutathione-S-transferases 26 and 28 (GST26 and 28), glutathione peroxidase (GPx), peroxiredoxin 1 and 2 (Prx1 and 2) and Cu/Zn superoxide dismutase (SOD), known to be involved in cellular redox reactions, in an attempt to evaluate their endogenous antioxidant function in the early-developing primary sporocyst stage of S. mansoni. Previously we demonstrated a specific and consistent RNA interference (RNAi)-mediated knockdown of GST26 and 28, Prx1 and 2, and GPx transcripts, and an unexpected elevation of SOD transcripts in sporocysts treated with gene-specific double-stranded (ds)RNA. In the present followup study, in vitro transforming sporocysts were exposed to dsRNAs for GST26 and 28, combined Prx1/2, GPx, SOD or green-fluorescent protein (GFP, control) for 7 days in culture, followed by assessment of the effects of specific dsRNA treatments on protein levels using semi-quantitative Western blot analysis (GST26, Prx1/2 only), and larval susceptibility to exogenous oxidative stress in in vitro killing assays. Significant decreases (80% and 50%) in immunoreactive GST26 and Prx1/2, respectively, were observed in sporocysts treated with specific dsRNA, compared to control larvae treated with GFP dsRNA. Sporocysts cultured with dsRNAs for GST26, GST28, Prx1/2 and GPx, but not SOD dsRNA, were significantly increased in their susceptibility to H2O2 oxidative stress (60–80% mortalities at 48 hr) compared to GFP dsRNA controls (∼18% mortality). H2O2-mediated killing was abrogated by bovine catalase, further supporting a protective role for endogenous sporocyst antioxidants. Finally, in vitro killing of S. mansoni sporocysts by hemocytes of susceptible NMRI B. glabrata snails was increased in larvae treated with Prx1/2, GST26 and GST28 dsRNA, compared to those treated with GFP or SOD dsRNAs. Results of these experiments strongly support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions. Moreover, these findings illustrate the efficacy of a RNAi-type approach in investigating gene function in larval schistosomes

    The Syk Kinase SmTK4 of Schistosoma mansoni Is Involved in the Regulation of Spermatogenesis and Oogenesis

    Get PDF
    The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6) acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes

    Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The <it>Schistosoma mansoni </it>genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the <it>S. mansoni </it>predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets.</p> <p>Results</p> <p>We have identified 252 ePKs, which corresponds to 1.9% of the <it>S. mansoni </it>predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that <it>S. mansoni </it>has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in <it>S. mansoni </it>or belong to an expanded family in this parasite. Only 16 <it>S. mansoni </it>ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite.</p> <p>Conclusions</p> <p>Our approach has improved the functional annotation of 40% of <it>S. mansoni </it>ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of <it>S. mansoni </it>in response to diverse environments during the parasite development, vector interaction, and host infection.</p

    Tissue Specific Profiling of Females of Schistosoma japonicum by Integrated Laser Microdissection Microscopy and Microarray Analysis

    Get PDF
    Schistosomes are parasitic worms responsible for important human diseases in tropical and developing nations. There is urgent need to develop new drugs and vaccines to augment current treatments for this disease. In recent years, concerted efforts by many laboratories have led to extensive genetic sequencing of the parasites, and the publication of genome sequence for two agents of schistosomiasis appears imminent. This genetic information has revealed many molecules expressed by the schistosome parasites for which no functional information is available. This lack of information extends to ignorance of where in the complex multicellular schistosome parasites the genes are expressed. We integrated two molecular and cellular techniques to address these knowledge gaps. We used laser microdissection microscopy to dissect small but highly important tissues involved in nutrition and reproduction from sections of female Schistosoma japonicum. From these dissected tissues we then used a broad molecular biology method to identify the multiple genes active in these tissues. Our approach has allowed us to formulate the basis of a “gene atlas” for schistosome parasites, defining the expression repertoire of specific tissues. The better understanding of the roles of tissues in parasite biology, especially in development, reproduction and interactions with its human hosts, should promote future investigations into pathogenesis and control of these significant parasites

    Analyses of an Expressed Sequence Tag Library from Taenia solium, Cysticerca

    Get PDF
    A method used to describe expressed genes at a specific stage in an organism is an EST library. In this method mRNA from a specific organism is isolated, transcribed into cDNA and sequenced. The sequence will derive from the 5′-end of the cDNA. The library will not have sequences from all genes, especially if they are expressed in low amounts or not at all in the studied stage. Also the library will mostly not contain full length sequences from genes, but expression patterns can be established. If EST libraries are made from different stages of the same organisms these libraries can be compared and differently expressed genes can be identified. Described here is an analysis of an EST library from the pig cysticerca which is thought to be similar to the stage giving the human neglected disease neurocysticercosis. Novel genes together with putative drug targets are examples of data presented

    Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Miltefosine, which is the first oral drug licensed for the treatment of leishmaniasis, was recently reported to be a promising lead compound for the synthesis of novel antischistosomal derivatives with potent activity <it>in vivo </it>against different developmental stages of <it>Schistosoma mansoni</it>. In this paper an <it>in vitro </it>study was carried out to investigate whether it has a biocidal activity against the aquatic stages of <it>Schistosoma mansoni </it>and its snail intermediate host, <it>Biomphalaria alexandrina </it>, thus being also a molluscicide. Additionally, to see whether miltefosine can have a broad spectrum antischistosomal activity, a similar <it>in vitro </it>study was carried out on the adult stage of <it>Schistosoma haematobium</it>, the second major human species, its larval stages and snail intermediate host, <it>Bulinus truncutes</it>. This was checked by scanning electron microscopy.</p> <p>Results</p> <p>Miltefosine proved to have <it>in vitro </it>ovicidal, schistolarvicidal and lethal activity on adult worms of both <it>Schistosoma </it>species and has considerable molluscicidal activity on their snail hosts. Scanning electron microscopy revealed several morphological changes on the different stages of the parasite and on the soft body of the snail, which further strengthens the current evidence of miltefosine's activity. This is the first report of mollusicidal activity of miltefosine and its <it>in vitro </it>schistosomicidal activity against <it>S.haematobium</it>.</p> <p>Conclusions</p> <p>This study highlights miltefosine not only as a potential promising lead compound for the synthesis of novel broad spectrum schistosomicidal derivatives, but also for molluscicidals.</p

    A Granulin-Like Growth Factor Secreted by the Carcinogenic Liver Fluke, Opisthorchis viverrini, Promotes Proliferation of Host Cells

    Get PDF
    The human liver fluke, Opisthorchis viverrini, infects millions of people throughout south-east Asia and is a major cause of cholangiocarcinoma, or cancer of the bile ducts. The mechanisms by which chronic infection with O. viverrini results in cholangiocarcinogenesis are multi-factorial, but one such mechanism is the secretion of parasite proteins with mitogenic properties into the bile ducts, driving cell proliferation and creating a tumorigenic environment. Using a proteomic approach, we identified a homologue of human granulin, a potent growth factor involved in cell proliferation and wound healing, in the excretory/secretory (ES) products of the parasite. O. viverrini granulin, termed Ov-GRN-1, was expressed in most parasite tissues, particularly the gut and tegument. Furthermore, Ov-GRN-1 was detected in situ on the surface of biliary epithelial cells of hamsters experimentally infected with O. viverrini. Recombinant Ov-GRN-1 was expressed in E. coli and refolded from inclusion bodies. Refolded protein stimulated proliferation of murine fibroblasts at nanomolar concentrations, and proliferation was inhibited by the MAPK kinase inhibitor, U0126. Antibodies raised to recombinant Ov-GRN-1 inhibited the ability of O. viverrini ES products to induce proliferation of murine fibroblasts and a human cholangiocarcinoma cell line in vitro, indicating that Ov-GRN-1 is the major growth factor present in O. viverrini ES products. This is the first report of a secreted growth factor from a parasitic worm that induces proliferation of host cells, and supports a role for this fluke protein in establishment of a tumorigenic environment that may ultimately manifest as cholangiocarcinoma
    corecore