2,103 research outputs found

    Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study.

    Get PDF
    Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma.published_or_final_versio

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    A rocky planet transiting a nearby low-mass star

    Full text link
    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at http://dx.doi.org/10.1038/nature15762. This is the authors' version of the manuscrip

    Potential application of mesh-free SPH method in turbulent river flows

    Get PDF
    A comprehensive review has been completed on the simulation of turbulent flow over rough beds using mesh-free particle models. Based on the outcomes of this review, an improved Smoothed Particle Hydrodynamics (SPH) method has been developed for open channel flows over a rough bed, in which a mixing length model is used for modeling the 2D turbulence and a drag force equation is proposed for treating the boundary shear. The proposed model was applied to simulate a depth-limited open channel flow over a rough bed surface. The results of the velocity profile and shear stress distribution show a good agreement with the experimental data and existing analytical solutions. This work reveals that in order to correctly model turbulent open channel flow over a rough bed, the treatment of both flow turbulence and bed roughness effect is equally important

    Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study

    Get PDF
    Author name used in this publication: Cornelia Man2013-2014 > Academic research: refereed > Publication in refereed journalpublished_fina

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    Global supply-chain effects of COVID-19 control measures

    Get PDF
    Countries have sought to stop the spread of coronavirus disease 2019 (COVID-19) by severely restricting travel and in-person commercial activities. Here, we analyse the supply-chain effects of a set of idealized lockdown scenarios, using the latest global trade modelling framework. We find that supply-chain losses that are related to initial COVID-19 lockdowns are largely dependent on the number of countries imposing restrictions and that losses are more sensitive to the duration of a lockdown than its strictness. However, a longer containment that can eradicate the disease imposes a smaller loss than shorter ones. Earlier, stricter and shorter lockdowns can minimize overall losses. A ‘go-slow’ approach to lifting restrictions may reduce overall damages if it avoids the need for further lockdowns. Regardless of the strategy, the complexity of global supply chains will magnify losses beyond the direct effects of COVID-19. Thus, pandemic control is a public good that requires collective efforts and support to lower-capacity countries

    Genome-Wide Effects of Long-Term Divergent Selection

    Get PDF
    To understand the genetic mechanisms leading to phenotypic differentiation, it is important to identify genomic regions under selection. We scanned the genome of two chicken lines from a single trait selection experiment, where 50 generations of selection have resulted in a 9-fold difference in body weight. Analyses of nearly 60,000 SNP markers showed that the effects of selection on the genome are dramatic. The lines were fixed for alternative alleles in more than 50 regions as a result of selection. Another 10 regions displayed strong evidence for ongoing differentiation during the last 10 generations. Many more regions across the genome showed large differences in allele frequency between the lines, indicating that the phenotypic evolution in the lines in 50 generations is the result of an exploitation of standing genetic variation at 100s of loci across the genome
    corecore