62 research outputs found
Drug allergy
Drug allergy encompasses a spectrum of immunologically-mediated hypersensitivity reactions with varying mechanisms and clinical presentations. This type of adverse drug reaction (ADR) not only affects patient quality of life, but may also lead to delayed treatment, unnecessary investigations, and even mortality. Given the myriad of symptoms associated with the condition, diagnosis is often challenging. Therefore, referral to an allergist experienced in the identification, diagnosis and management of drug allergy is recommended if a drug-induced allergic reaction is suspected. Diagnosis relies on a careful history and physical examination. In some instances, skin testing, graded challenges and induction of drug tolerance procedures may be required
Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats
Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity
Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders
Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research
In thrombin stimulated human platelets Citalopram, Promethazine, Risperidone, and Ziprasidone, but not Diazepam, may exert their pharmacological effects also through intercalation in membrane phospholipids in a receptor-independent manner
Intercalation of drugs in the platelet membrane affects phospholipid-requiring enzymatic processes according to the drugs’ intercalation capability. We investigated effects of Promethazine, Citalopram, Ziprasidone, Risperidone, and Diazepam on phospholipase A2 (PLA2) and polyphosphoinositide (PPI) metabolism in thrombin-stimulated human platelets. We also examined effects of the drugs on monolayers of glycerophospholipids using the Langmuir technique. Diazepam did not influence PLA2 activity, had no effects on PPI cycle, and caused no change in mean molecular area of phospholipid monolayers. The remaining psychotropic drugs affected these parameters in different ways and levels of potency suggesting that they act by being intercalated between the molecules of adjacent membrane phospholipids, thus causing changes in substrate availability for phospholipid-hydrolyzing enzymes (PLA2 and Phospholipase C). We show that several psychotropic drugs can also have other cellular effects than receptor antagonism. These effects may be implicated in the psychotropic effects of the drugs and/or their side effects
Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution
Tyrosinase encapsulated silica aerogel (TESA) was synthesized via an alcohol-free colloidal sol–gel route at room temperature and at neutral pH. Characterization on TESA indicated that 98% of enzyme was effectively loaded and located inside the aerogel network. TESA without solvent extraction showed higher tyrosinase activity than TESA extracted by amyl acetate/acetone (v/v:1/1). Stability of tyrosinase in TESA was enhanced towards extreme temperature, acidic and basic conditions. Optimization study indicates that 500 U enzyme/g silica aerogel; aged for 2 days, showed superior performance in the oxidation of catechol. The activity of TESA was remarkably enhanced; which was active at a wider temperature (up to 80 °C) and pH range (4–9). In contrast, free tyrosinase was totally inactive at these pH values and temperature >55 °C. TESA successfully removed about 90% of phenol in aqueous solution after 3 h of contact time with excellent reusability
A brain-damaged patient with an unusual perceptuomotor deficit
When interacting with objects, the pattern of movements is influenced by such object characteristics as size and position. Little is known about the effect of higher level categorical encoding of objects upon movements. Here we present evidence for an approval-for-action process which takes into account such encoding. For the brain-damaged subject L.P., the ability to complete actions involving two objects in central vision is influenced by the semantic or functional relationship between the objects. Even though she perceives only one object, she can integrate two related objects into a coordinated action. If the objects are not related she is unable to integrate them into a single motor act. We propose that selection-for-action systems include processes which gate conceptually the behavioural disposition to action
- …