48 research outputs found

    Spiny lobster development: where does successful metamorphosis to the puerulus occur?: a review

    Get PDF
    This review re-addresses the question: Where does metamorphosis to the puerulus mainly take place among the shallow-water palinurids? A decade ago we reviewed this ecological question in a paper that focused on phyllosomal development of the western rock lobster, Panulirus cygnus. The main region of occurrence of its metamorphosis was found to be in the slope region beyond the shelf break. Because the puerulus of P. cygnus is a non-feeding stage, it was hypothesised that metamorphosis will not occur until the final phyllosoma has reached some critical, and specific, level of stored energy reserves. For late larval development and successful metamorphosis of P. cygnus, the richest food resources seem to be located in the slope waters adjoining the shelf break off Western Australia. This, like most shelf break areas, is a region of higher zooplankton and micronekton biomass than is usually found further offshore, and is dominated (in winter-spring months) by the warm south-flowing Leeuwin Current. In this new review, distribution and abundance data of final phyllosomas and pueruli are examined from, Panulirusargus, Panulirus cygnus, Panulirus japonicus, Panulirus ornatus and Jasus edwardsii, and where possible, related to features of the satellite imagery of the areas in which they occur. We hypothesise that metamorphosis will occur where the final stages have partaken of sufficient, appropriate nutrition to provide them with a reserve of bioenergetic resources, and this can occur where oceanographic fronts effect greater planktonic productivity and concentrations of food organisms. This may be near the shelf-break, or out to large distances offshore, because of large-scale oceanographic events such as the prevailing current system, its off-shoots, mesoscale eddy fronts, counter-currents, etc. However, we contend that, in terms of population recruitment, metamorphosis in most shallow-water palinurid species occurs mainly in the slope waters adjoining the shelf break of the region to which the species is endemic. Although some final phyllosomas may metamorphose much further offshore, it is unlikely that these pueruli will reach the shore, let alone settle and successfully moult to the juvenile stage. All of the data indicate that successful metamorphosis from the final-stage phyllosoma to the puerulus stage in all species occurs offshore but close to the continental shelf

    Exploring the Universe with Metal-Poor Stars

    Full text link
    The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars (with metallicities down to [Fe/H]\sim-5.5) are relics from the high-redshift Universe, they probe the chemical and dynamical conditions of the Milky Way and the origin and evolution of the elements through nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. The Milky Way's dwarf satellites contain a large fraction (~30%) of the known most metal-poor stars that have chemical abundances that closely resemble those of equivalent halo stars. This suggests that chemical evolution may be universal, at least at early times, and that it is driven by massive, energetic SNe. Some of these surviving, ultra-faint systems may show the signature of just one such PopIII star; they may even be surviving first galaxies. Early analogs of the surviving dwarfs may thus have played an important role in the assembly of the old Galactic halo whose formation can now be studied with stellar chemistry. Following the cosmic evolution of small halos in simulations of structure formation enables tracing the cosmological origin of the most metal-poor stars in the halo and dwarf galaxies. Together with future observations and additional modeling, many of these issues, including the reionization history of the Milky Way, may be constrained this way. The chapter concludes with an outlook about upcoming observational challenges and ways forward is to use metal-poor stars to constrain theoretical studies.Comment: 34 pages, 11 figures. Book chapter to appear in "The First Galaxies - Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V. Bromm, B. Mobasher, T. Wiklin

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    Get PDF
    peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center

    Genetic Isolation between the Western and Eastern Pacific Populations of Pronghorn Spiny Lobster Panulirus penicillatus

    Get PDF
    The pronghorn spiny lobster, Panulirus penicillatus, is a circumtropical species which has the widest global distribution among all the species of spiny lobster, ranging throughout the entire Indo-Pacific region. Partial nucleotide sequences of mitochondrial DNA COI (1,142–1,207 bp) and 16S rDNA (535–546 bp) regions were determined for adult and phyllosoma larval samples collected from the Eastern Pacific (EP)(Galápagos Islands and its adjacent water), Central Pacific (CP)(Hawaii and Tuamotu) and the Western Pacific (WP)(Japan, Indonesia, Fiji, New Caledonia and Australia). Phylogenetic analyses revealed two distinct large clades corresponding to the geographic origin of samples (EP and CP+WP). No haplotype was shared between the two regional samples, and average nucleotide sequence divergence (Kimura's two parameter distance) between EP and CP+WP samples was 3.8±0.5% for COI and 1.0±0.4% for 16S rDNA, both of which were much larger than those within samples. The present results indicate that the Pacific population of the pronghorn spiny lobster is subdivided into two distinct populations (Eastern Pacific and Central to Western Pacific), with no gene flow between them. Although the pronghorn spiny lobster have long-lived teleplanic larvae, the vast expanse of Pacific Ocean with no islands and no shallow substrate which is known as the East Pacific Barrier appears to have isolated these two populations for a long time (c.a. 1MY)

    Metal-Poor Stars and the Chemical Enrichment of the Universe

    Full text link
    Metal-poor stars hold the key to our understanding of the origin of the elements and the chemical evolution of the Universe. This chapter describes the process of discovery of these rare stars, the manner in which their surface abundances (produced in supernovae and other evolved stars) are determined from the analysis of their spectra, and the interpretation of their abundance patterns to elucidate questions of origin and evolution. More generally, studies of these stars contribute to other fundamental areas that include nuclear astrophysics, conditions at the earliest times, the nature of the first stars, and the formation and evolution of galaxies -- including our own Milky Way. We illustrate this with results from studies of lithium formed during the Big Bang; of stars dated to within ~1 Gyr of that event; of the most metal-poor stars, with abundance signatures very different from all other stars; and of the build-up of the elements over the first several Gyr. The combination of abundance and kinematic signatures constrains how the Milky Way formed, while recent discoveries of extremely metal-poor stars in the Milky Way's dwarf galaxy satellites constrain the hierarchical build-up of its stellar halo from small dark-matter dominated systems. [abridged]Comment: Book chapter, emulated version, 34 pages; number of references are limited by publisher; to appear in Vol. 5 of textbook "Planets, Stars and Stellar Systems", by Springer, in 201

    Credible knowledge: A pilot evaluation of a modified GRADE method using parent-implemented interventions for children with autism

    Get PDF
    Abstract Background Decision-making in child and youth mental health (CYMH) care requires recommendations that are developed through an efficient and effective method and are based on credible knowledge. Credible knowledge is informed by two sources: scientific evidence, and practice-based evidence, that reflects the "real world" experience of service providers. Current approaches to developing these recommendations in relation to CYMH will typically include evidence from one source or the other but do not have an objective method to combine the two. To this end, a modified version of the Grading Recommendations Assessment, Development and Evaluation (GRADE) approach was pilot-tested, a novel method for the CYMH field. Methods GRADE has an explicit methodology that relies on input from scientific evidence as well as a panel of experts. The panel established the quality of evidence and derived detailed recommendations regarding the organization and delivery of mental health care for children and youth or their caregivers. In this study a modified GRADE method was used to provide precise recommendations based on a specific CYMH question (i.e. What is the current credible knowledge concerning the effects of parent-implemented, early intervention with their autistic children?). Results Overall, it appeared that early, parent-implemented interventions for autism result in positive effects that outweigh any undesirable effects. However, as opposed to overall recommendations, the heterogeneity of the evidence required that recommendations be specific to particular interventions, based on the questions of whether the benefits of a particular intervention outweighs its harms. Conclusions This pilot project provided evidence that a modified GRADE method may be an effective and practical approach to making recommendations in CYMH, based on credible knowledge. Key strengths of the process included separating the assessments of the quality of the evidence and the strength of recommendations, transparency in decision-making, and the objectivity of the methods. Most importantly, this method combined the evidence and clinical experience in a more timely, explicit and simple process as compared to previous approaches. The strengths, limitations and modifications of the approach as they pertain to CYMH, are discussed

    The supernatural characters and powers of sacred trees in the Holy Land

    Get PDF
    This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual
    corecore