22 research outputs found

    Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children

    Get PDF
    A series of 23 children with primitive neuroectodermal tumours (PNET) were analysed with comparative genomic hybridization (CGH). Multiple chromosomal imbalances have been detected in 20 patients. The most frequently involved chromosome was chromosome 17, with a gain of 17q (11 cases) and loss of 17p (eight cases). Further recurrent copy number changes were detected. Extra copies of chromosome 7 were present in nine patients and gains of 1q were detected in six patients. A moderate genomic amplification was detected in one patient, involving two sites on 3p and the whole 12p. Losses were more frequent, and especially involved the chromosomes 11 (nine cases), 10q (eight cases), 8 (six cases), X (six patients) and 3 (five cases), and part of chromosome 9 (five cases). These recurrent chromosomal changes may highlight locations of novel genes with an important role in the development and/or progression of PNET. © 1999 Cancer Research Campaig

    Androgen receptor deregulation drives bromodomain-mediated chromatin alterations in prostate cancer.

    No full text
    Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses
    corecore