3 research outputs found

    The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air

    Get PDF
    Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004–2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors

    Assessment of Bacterial and Fungal Aerosol in Different Residential Settings

    No full text
    The concentration and size distribution of bacterial and fungal aerosol was studied in 15 houses. The houses were categorized into three types, based on occupant density and number of rooms: single room in shared accommodation (type I), single bedroom flat in three storey buildings (type II) and two or three bedroomed houses (type III). Sampling was undertaken with an Anderson six-stage impactor during the summer of 2007 in the living rooms of all the residential settings. The maximum mean geometric concentration of bacterial (5,036 CFU/m3, ± 2.5, n∈=∈5) and fungal (2,124 CFU/m 3, ± 1.38, n∈=∈5) aerosol were in housing type III. The minimum levels of indoor culturable bacteria (1,557 CFU/m3, ±1.5, n∈=∈5) and fungal (925 CFU/m3, ±2.9, n∈=∈5) spores were observed in housing type I. The differences in terms of total bacterial and fungal concentration were less obvious between housing types I and II as compared to type III. With reference to size distribution, the dominant stages for culturable bacteria in housing types I, II and III were stage 3 (3.3-4.7 μm), stage 1 (7 μm and above) and stage 5 (1.1-2.1 μm), respectively. Whereas the maximum numbers of culturable fungal spores were recovered from stage 2 (4.7-7 μm), in housing type I, and from stage 4 (2.1-3.3 μm) in both type II and III houses. The average geometric mean diameter of bacterial aerosol was largest in type I (4.7 μm), followed by type II (3.89 μm) and III (1.96 μm). Similarly, for fungal spores, type I houses had the highest average mean geometric diameter (4.5 μm), while in types II and III the mean geometric diameter was 3.57 and 3.92 μm, respectively. The results indicate a wide variation in total concentration and size of bioaerosols among different residential settings. The observed differences in the size distributions and concentrations reflect their variable airborne behaviour and, as a result, different risks of respiratory exposure of the occupants to bioaerosols in various residential settings. © 2010 Springer Science+Business Media B.V
    corecore