2,046 research outputs found

    A Robust e-Invigilation System Employing Multimodal Biometric Authentication

    Get PDF
    The significant growth in users of e-learning technologies and their use in courses has given rise to a major concern over protecting them from misuse; a significant concern is that of the potential for cheating or illicit assistance during online examinations. This paper presents the development of robust, flexible, transparent and continuous authentication mechanism for e-assessments. To monitor the exam taker and ensure that only the legitimate student is taking the exam, the system offers a continuous user identification employing multimodal biometrics; a security layer using an eye tracker to record the student’s eye movement; and, speech recognition to detect inappropriate communication. The focus of this paper in particular is the development and evaluation of 3D facial authentication. An experiment has been conducted to investigate the ability of the proposed platform to detect any cheating attempts. During the experiment, participants\u27 biometric data, eye movement, and head movements have been collected using custom software. The 3D camera also captured the session using a built-in microphone and the system recognized speech (employing a speech recognition algorithm). 51 participants participated in this experiment. The FRR of all legitimate participants was 0 and 0.0063 in 2D and 3D facial recognition modes respectively. Furthermore, three participants were tasked with a series of eight scenarios that map to typical misuse. The results of the FAR and FRR of five of these threat scenarios in both 2D and 3D mode were 0 with two cases exhibiting an FAR of 0.11 and 0.076 in the 2D mode

    General Minimal Flavor Violation

    Get PDF
    A model independent study of the minimal flavor violation (MFV) framework is presented, where the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading terms, and nonlinear MFV, where such a truncation is not possible due to large third generation Yukawa couplings. These are then resummed to all orders using non-linear sigma-model techniques familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual U(2) symmetry, the extra CPV in B_d-\bar B_d mixing is bounded by CPV in B_s-\bar B_s mixing. If operators with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is negligible in processes involving only the first two generations. We find large enhancements in the up type sector, both in CPV in D-\bar D mixing and in top flavor violation.Comment: 5 pages and no figure

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    Teleology and Realism in Leibniz's Philosophy of Science

    Get PDF
    This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz

    Gravitational collapse with tachyon field and barotropic fluid

    Full text link
    A particular class of space-time, with a tachyon field, \phi, and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., V(\phi) \sim \phi^{-2}. Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, \gamma. Furthermore, these collapsing scenarios both have as final state the formation of a black hole.Comment: 18 pages, 7 figures. v3: minor changes. Final version to appear in GR

    Taxonomic Distinctness of Demersal Fishes of the California Current: Moving Beyond Simple Measures of Diversity for Marine Ecosystem-Based Management

    Get PDF
    BACKGROUND: Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness) to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32-48 degrees N) and depth (ca. 50-1220 m) for demersal fishes on the continental shelf and slope of the US Pacific coast. METHODOLOGY/PRINCIPAL FINDINGS: Both average taxonomic distinctness (AvTD) and variation in taxonomic distinctness (VarTD) changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50-150 m) but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD) was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50-150 m), VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. CONCLUSIONS/SIGNIFICANCE: These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current

    Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams

    Get PDF
    Although our knowledge of the spatial distribution of stream organisms has been increasing rapidly in the last decades, there is still little consensus about trait-based variability of macroinvertebrate communities within and between catchments in near-pristine systems. Our aim was to examine the taxonomic and trait based stability vs. variability of stream macroinvertebrates in three high-latitude catchments in Finland. The collected taxa were assigned to unique trait combinations (UTCs) using biological traits. We found that only a single or a highly limited number of taxa formed a single UTC, suggesting a low degree of redundancy. Our analyses revealed significant differences in the environmental conditions of the streams among the three catchments. Linear models, rarefaction curves and beta-diversity measures showed that the catchments differed in both alpha and beta diversity. Taxon- and trait-based multivariate analyses also indicated that the three catchments were significantly different in terms of macroinvertebrate communities. All these findings suggest that habitat filtering, i.e., environmental differences among catchments, determines the variability of macroinvertebrate communities, thereby contributing to the significant biological differences among the catchments. The main implications of our study is that the sensitivity of trait-based analyses to natural environmental variation should be carefully incorporated in the assessment of environmental degradation, and that further studies are needed for a deeper understanding of trait-based community patterns across near-pristine streams

    A frequentist framework of inductive reasoning

    Full text link
    Reacting against the limitation of statistics to decision procedures, R. A. Fisher proposed for inductive reasoning the use of the fiducial distribution, a parameter-space distribution of epistemological probability transferred directly from limiting relative frequencies rather than computed according to the Bayes update rule. The proposal is developed as follows using the confidence measure of a scalar parameter of interest. (With the restriction to one-dimensional parameter space, a confidence measure is essentially a fiducial probability distribution free of complications involving ancillary statistics.) A betting game establishes a sense in which confidence measures are the only reliable inferential probability distributions. The equality between the probabilities encoded in a confidence measure and the coverage rates of the corresponding confidence intervals ensures that the measure's rule for assigning confidence levels to hypotheses is uniquely minimax in the game. Although a confidence measure can be computed without any prior distribution, previous knowledge can be incorporated into confidence-based reasoning. To adjust a p-value or confidence interval for prior information, the confidence measure from the observed data can be combined with one or more independent confidence measures representing previous agent opinion. (The former confidence measure may correspond to a posterior distribution with frequentist matching of coverage probabilities.) The representation of subjective knowledge in terms of confidence measures rather than prior probability distributions preserves approximate frequentist validity.Comment: major revisio

    The Ecological Impacts of Contaminated Sediment from Abandoned Metal Mines

    Get PDF
    Contains public sector information licensed under the Open Government Licence v3.0. The OGL requires that users acknowledge the information provider and/or source of the information with an attribution statement.Pollution from abandoned non-coal (i.e. metal) mines is a serious impediment to rivers meeting the water quality targets set out in River Basin Management Plans. Recent work has identified the mines most likely to be causing a significant environmental impact and hence where efforts to prevent pollution need to be focussed. Yet, it is not clear to what extent rivers, and the animal and plant life they support, are impacted by the legacy of past pollution still bound up in river sediments. Work will be undertaken to reduce toxic metals in mine waters before they enter the river. However, if riverbed sediments are already contaminated and affecting life in rivers, the planned clean-up of mine water sources may not result in recovery of ecological condition. A controlled laboratory experiment was undertaken where river invertebrates (mayfly larvae) from an uncontaminated site were incubated with contaminated riverbed sediment collected downstream of an abandoned metal mine. Concentrations of metals in the tissues of the mayflies increased over the duration of the incubation, particularly those metals that were in high concentrations in the sediment, i.e. cadmium, copper and zinc. As the sediment was the only substantial source of metals in the experiment, it is apparent that the contaminated riverbed sediment was acting as a source of bioavailable metals. It is likely that contaminated sediments, including riverbed sediment, will act as a source of bioavailable metals, at least to benthic organisms, even where mine drainage water is treated to reduce metal concentrations. Metal toxicity occurs when the rate of metal uptake into an organism exceeds the combined rates of excretion and physiological detoxification. Current tests of metal toxicity on biota typically do not match in scale (temporal, spatial and taxonomic range) with assessments of ecological quality undertaken for management, which raises questions regarding the adequacy of environmental limits based on laboratory testing. Existing data were compiled describing geochemistry of riverbed sediment and the Biological Quality Elements invertebrates, diatoms, macrophytes and fish, collected by the regulatory authorities to assess the condition of rivers. As toxic effects of trace metals were not expected at low concentrations, the biological response to sediment metal concentration was determined using a threshold model. Thresholds were found for biotic metrics based on species richness, but other metrics (diatom EQR, macrophyte EQR and invertebrate ASPT) displayed implausible positive relationships with sediment metal concentrations and should not be relied upon for classification of ecological status in waterbodies affected by mining. New data were collected from 20 spatially-independent river catchments in areas affected by metal mine facilities, including samples of the macroinvertebrate community, bioavailability of metals (assessed as metal concentrations in the body tissue of tolerant taxa), and sediment metal concentrations. There were strong correlations between sediment metal concentrations and measured bioavailability, particularly for copper and lead. Measurements of bioavailable metals were related to changes in taxon richness in the invertebrate samples. The data were used to develop a new biotic index (MetTol), which can be used to assess the extent of ecological damage from metal contamination using standard invertebrate monitoring data, and to construct dose response curves based on species sensitivities. A number of approaches were used to establish tolerable limits for sediment metal concentrations based on ecological data, and the results compared with existing Canadian sediment quality guidelines. The limits for copper derived from ecological data were most consistent with existing sediment guidelines. The limits for other metals (silver, arsenic, cadmium, nickel, lead and zinc) derived from ecological data were up to an order of magnitude above the Canadian interim sediment quality guidelines. These existing guidelines, based on toxicological data, may be too precautionary, and we suggest that guideline sediment concentrations based on ecological data may provide a more appropriate level of protection for the environment
    • …
    corecore