339 research outputs found

    Quantitative assessment of human motion using video motion analysis

    Get PDF
    In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described

    Huellas del pasado

    Get PDF
    This unit was created to be taught using the TPRS (Teaching Proficiency through Reading and Storytelling) approach and traditional methods. The textbook used with this unit is Exprésate 3, specifically Chapter 9. This UbD unit was written for an ABc schedule (90/90/45) with the goal of students becoming more confident with their use of advanced Spanish and understanding the importance of storytelling. It should be noted that while “Days” are written in the unit they should function more as a guide. The sequence is significantly more important than the schedule

    Tracking and data system support for Surveyor mission 5, volume 3

    Get PDF
    Surveyor 5 tracking and data system activities evaluated from planning to final flight stage

    Quantitative assessment of human motion using video motion analysis

    Get PDF
    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software

    Documentation of structures branch programs and program updates. Project 3200

    Get PDF
    Update programming of applications programs for the integrated structural analysis system is reported. An attempt is made to layout a standard document format for the preparation of program documents. Documentation which involves changes, additions, and I/O capability revisions to existing programs includes a checklist which should be reviewed each time a programming effort is documented

    BIOMECHANICAL ANALYSIS OF THE SHOT-PUT EVENT AT THE 2004 ATHENS OLYMPIC GAMES

    Get PDF
    The purpose of this study was to analyze the best shot put performances in the Athens 2004 Olympic Games. Multiple high speed digital video cameras were placed in specific locations on the field at proper angles in order to capture the performance of the athletes in the preliminaries and finals. Two stationary cameras were placed at 45 degrees to each other. In addition 3 more cameras used by the NBC broadcasting were used to assist the other 2 cameras. Temporal and kinematics variables were calculated from the videos records and were analyzed yielding three-dimensional biomechanical results. Patterns of the segmental movements were used rather than absolute values, to assist the athletes and the coaches in the analysis of the performances. Kinematics parameters for the best 3 fina'l performers were presented in this study

    A defect-in-continuity in the canine femur: and in-vivo experimental model for the study of bone graft incorporation.

    Get PDF
    The in-vivo study of bone graft incorporation has traditionally used a segmental diaphyseal bone defect. This model reliably produces a nonunion, but is complicated by graft instability and altered limb loading stresses. The authors discuss the advantages of a defect-in-continuity canine femur model which produces a more consistent union with fewer mechanical complications despite the absence of fixation. This proposed model permits analysis of radiographic, histologic and biomechanical data which are more applicable to the usual clinical setting in which bone graft is required

    Development of a Robotic Simulation Platform for Spacecraft Proximity Operations and Contact Dynamics Experiments

    Get PDF
    A major challenge facing the introduction of new technologies and techniques in space flight is the high cost required to raise the Technological Readiness Level (TRL) prior to flight. This is a result of the cost and scarcity of developmental launch opportunities for verification and validation. A ground facility with the capability for six degree-of-freedom robotic spacecraft emulation that enables laboratory-based hardware-in-the-loop experiments is desired, to allow for the simulation of space- based operations for almost any mission. Such a facility would enable experiments that can be used pre-flight to reduce development cost and ensure the functionality of sensor suites with guidance, navigation, and control systems. However, a major shortfall of most robotic motion emulation systems is the inability to simulate proximity operations involving contact dynamics, due to their methods of actuation and required dynamic response time. To provide this capability at the Texas A&M Land Air and Space Robotics (LASR) Lab, a novel low-cost robotic platform called the Suspended Target Emulation Pendulum (STEP) was developed. This thesis de- tails the design, system dynamics, simulation, and control of the STEP system, and presents experimental results from an initial prototype

    Einstein Probe - a small mission to monitor and explore the dynamic X-ray Universe

    Full text link
    Einstein Probe is a small mission dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and to monitor variable objects in the 0.54 0.5-4~keV X-rays, at higher sensitivity by one order of magnitude than those of the ones currently in orbit. Its wide-field imaging capability, featuring a large instantaneous field-of-view (60×6060^\circ \times60^\circ, 1.1\sim1.1sr), is achieved by using established technology of micro-pore (MPO) lobster-eye optics, thereby offering unprecedentedly high sensitivity and large Grasp. To complement this powerful monitoring ability, it also carries a narrow-field, sensitive follow-up X-ray telescope based on the same MPO technology to perform follow-up observations of newly-discovered transients. Public transient alerts will be downlinked rapidly, so as to trigger multi-wavelength follow-up observations from the world-wide community. Over three of its 97-minute orbits almost the entire night sky will be sampled, with cadences ranging from 5 to 25 times per day. The scientific objectives of the mission are: to discover otherwise quiescent black holes over all astrophysical mass scales by detecting their rare X-ray transient flares, particularly tidal disruption of stars by massive black holes at galactic centers; to detect and precisely locate the electromagnetic sources of gravitational-wave transients; to carry out systematic surveys of X-ray transients and characterize the variability of X-ray sources. Einstein Probe has been selected as a candidate mission of priority (no further selection needed) in the Space Science Programme of the Chinese Academy of Sciences, aiming for launch around 2020.Comment: accepted to publish in PoS, Proceedings of "Swift: 10 Years of Discovery" (Proceedings of Science; ed. by P. Caraveo, P. D'Avanzo, N. Gehrels and G. Tagliaferri). Minor changes in text, references update
    corecore