11,290 research outputs found
Safety, the Preface Paradox and Possible Worlds Semantics
This paper contains an argument to the effect that possible worlds semantics renders
semantic knowledge impossible, no matter what ontological interpretation is given
to possible worlds. The essential contention made is that possible worlds semantic
knowledge is unsafe and this is shown by a parallel with the preface paradox
Electronic excitation of H_2O by low-energy electron impact
Cross sections for electronic excitation of H_2O by low-energy electrons have been studied using the Schwinger multichannel method. Differential and integral cross sections for excitation of the (3a_1→3sa_1)^3A_1 dissociative state are reported for impact energies of 12, 15, and 20 eV. A comparison of the calculated integral cross sections with emission measurements for OH (A^2Σ^+) produced via dissociative electron-impact excitation of H_2O in this energy range is encouraging
Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes
We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion
Optical Weak Link between Two Spatially Separate Bose-Einstein Condensates
Two spatially separate Bose-Einstein condensates were prepared in an optical
double-well potential. A bidirectional coupling between the two condensates was
established by two pairs of Bragg beams which continuously outcoupled atoms in
opposite directions. The atomic currents induced by the optical coupling depend
on the relative phase of the two condensates and on an additional controllable
coupling phase. This was observed through symmetric and antisymmetric
correlations between the two outcoupled atom fluxes. A Josephson optical
coupling of two condensates in a ring geometry is proposed. The continuous
outcoupling method was used to monitor slow relative motions of two elongated
condensates and characterize the trapping potential.Comment: 4 pages, 5 figure
Quantum reflection of atoms from a solid surface at normal incidence
We observed quantum reflection of ultracold atoms from the attractive
potential of a solid surface. Extremely dilute Bose-Einstein condensates of
^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak
gravito-magnetic trap were normally incident on a silicon surface. Reflection
probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s.
The velocity dependence agrees qualitatively with the prediction for quantum
reflection from the attractive Casimir-Polder potential. Atoms confined in a
harmonic trap divided in half by a solid surface exhibited extended lifetime
due to quantum reflection from the surface, implying a reflection probability
above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure
On the complexity of strongly connected components in directed hypergraphs
We study the complexity of some algorithmic problems on directed hypergraphs
and their strongly connected components (SCCs). The main contribution is an
almost linear time algorithm computing the terminal strongly connected
components (i.e. SCCs which do not reach any components but themselves).
"Almost linear" here means that the complexity of the algorithm is linear in
the size of the hypergraph up to a factor alpha(n), where alpha is the inverse
of Ackermann function, and n is the number of vertices. Our motivation to study
this problem arises from a recent application of directed hypergraphs to
computational tropical geometry.
We also discuss the problem of computing all SCCs. We establish a superlinear
lower bound on the size of the transitive reduction of the reachability
relation in directed hypergraphs, showing that it is combinatorially more
complex than in directed graphs. Besides, we prove a linear time reduction from
the well-studied problem of finding all minimal sets among a given family to
the problem of computing the SCCs. Only subquadratic time algorithms are known
for the former problem. These results strongly suggest that the problem of
computing the SCCs is harder in directed hypergraphs than in directed graphs.Comment: v1: 32 pages, 7 figures; v2: revised version, 34 pages, 7 figure
- …