86 research outputs found

    Erectile dysfunction, physical activity and metabolic syndrome: differences in markers of atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Erectile dysfunction (ED), impaired arterial elasticity, elevated resting heart rate as well as increased levels of oxidized LDL and fibrinogen associate with future cardiovascular events. Physical activity is crucial in the prevention of cardiovascular diseases (CVD), while metabolic syndrome (MetS) comprises an increased risk for CVD events. The aim of this study was to assess whether markers of subclinical atherosclerosis are associated with the presence of ED and MetS, and whether physical activity is protective of ED.</p> <p>Methods</p> <p>57 MetS (51.3 ± 8.0 years) and 48 physically active (PhA) (51.1 ± 8.1 years) subjects participated in the study. ED was assessed by the International Index of Erectile Function (IIEF) questionnaire, arterial elasticity by a radial artery tonometer (HDI/PulseWave™ CR-2000) and circulating oxLDL by a capture ELISA immunoassay. Fibrinogen and lipids were assessed by validated methods. The calculation of mean daily energy expenditure of physical exercise was based on a structured questionnaire.</p> <p>Results</p> <p>ED was more often present among MetS compared to PhA subjects, 63.2% and 27.1%, respectively (p < 0.001). Regular physical exercise at the level of > 400 kcal/day was protective of ED (OR 0.12, 95% CI 0.017-0.778, p = 0.027), whereas increased fibrinogen (OR 4.67, 95% CI 1.171-18.627, p = 0.029) and elevated resting heart rate (OR 1.07, 95% CI 1.003-1.138, p = 0.04) were independently associated with the presence of ED. In addition, large arterial elasticity (ml/mmHgx10) was lower among MetS compared to PhA subjects (16.6 ± 4.0 <it>vs</it>. 19.6 ± 4.2, p < 0.001), as well as among ED compared to non-ED subjects (16.7 ± 4.6 <it>vs</it>. 19.0 ± 3.9, p = 0.008). Fibrinogen and resting heart rate were highest and large arterial elasticity lowest among subjects with both MetS and ED.</p> <p>Conclusions</p> <p>Markers of subclinical atherosclerosis associated with the presence of ED and were most evident among subjects with both MetS and ED. Thus, especially MetS patients presenting with ED should be considered at high risk for CVD events. Physical activity, on its part, seems to be protective of ED.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01119404">NCT01119404</a></p

    Phosphodiesterase-5 inhibitors have distinct effects on the hemodynamics of the liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NO - cGMP system plays a key role in the regulation of sinusoidal tonus and liver blood flow with phosphodiesterase-5 (PDE-5) terminating the dilatory action of cGMP. We, therefore, investigated the effects of PDE-5 inhibitors on hepatic and systemic hemodynamics in rats.</p> <p>Methods</p> <p>Hemodynamic parameters were monitored for 60 min. after intravenous injection of sildenafil and vardenafil [1, 10 and 100 μg/kg (sil1, sil10, sil100, var1, var10, var100)] in anesthetized rats.</p> <p>Results</p> <p>Cardiac output and heart rate remained constant. After a short dip, mean arterial blood pressure again increased. Systemic vascular resistance transiently decreased slightly. Changes in hepatic hemodynamic parameters started after few minutes and continued for at least 60 min. Portal (var10 -31%, sil10 -34%) and hepatic arterial resistance (var10 -30%, sil10 -32%) decreased significantly (p < 0.05). At the same time portal venous (var10 +29%, sil10 +24%), hepatic arterial (var10 +34%, sil10 +48%), and hepatic parenchymal blood flow (var10 +15%, sil10 +15%) increased significantly (p < 0.05). The fractional liver blood flow (total liver flow/cardiac output) increased significantly (var10 26%, sil10 23%). Portal pressure remained constant or tended to decrease. 10 μg/kg was the most effective dose for both PDE-5 inhibitors.</p> <p>Conclusion</p> <p>Low doses of phosphodiesterase-5 inhibitors have distinct effects on hepatic hemodynamic parameters. Their therapeutic use in portal hypertension should therefore be evaluated.</p

    The Blood Pressure "Uncertainty Range" – a pragmatic approach to overcome current diagnostic uncertainties (II)

    Get PDF
    A tremendous amount of scientific evidence regarding the physiology and physiopathology of high blood pressure combined with a sophisticated therapeutic arsenal is at the disposal of the medical community to counteract the overall public health burden of hypertension. Ample evidence has also been gathered from a multitude of large-scale randomized trials indicating the beneficial effects of current treatment strategies in terms of reduced hypertension-related morbidity and mortality. In spite of these impressive advances and, deeply disappointingly from a public health perspective, the real picture of hypertension management is overshadowed by widespread diagnostic inaccuracies (underdiagnosis, overdiagnosis) as well as by treatment failures generated by undertreatment, overtreatment, and misuse of medications. The scientific, medical and patient communities as well as decision-makers worldwide are striving for greatest possible health gains from available resources. A seemingly well-crystallised reasoning is that comprehensive strategic approaches must not only target hypertension as a pathological entity, but rather, take into account the wider environment in which hypertension is a major risk factor for cardiovascular disease carrying a great deal of our inheritance, and its interplay in the constellation of other, well-known, modifiable risk factors, i.e., attention is to be switched from one's "blood pressure level" to one's absolute cardiovascular risk and its determinants. Likewise, a risk/benefit assessment in each individual case is required in order to achieve best possible results. Nevertheless, it is of paramount importance to insure generalizability of ABPM use in clinical practice with the aim of improving the accuracy of a first diagnosis for both individual treatment and clinical research purposes. Widespread adoption of the method requires quick adjustment of current guidelines, development of appropriate technology infrastructure and training of staff (i.e., education, decision support, and information systems for practitioners and patients). Progress can be achieved in a few years, or in the next 25 years

    Hypertensive Heart Disease

    No full text
    corecore