18,582 research outputs found
The parsec scale region of Active Galactic Nuclei in the IR
First results from the AGN-Heidelberg program aimed at spatially resolving
the central pc region of the closest Active Galactic Nuclei are presented. The
core region of prototype active nuclei are clearly unveiled at IR waves and at
distances from the nucleus - few pc- where circumnuclear starforming regions
appear not to be present. Within that perspective, classical active nuclei as
Circinus and NGC 1097, reveal with unprecedented detail clear channels of
material being driven to the core whereas others as Centaurus A and NGC 1566,
show a "clean" core environment. At the very center, a central compact region
of about 2 pc scale is resolved in Circinus but not in the other cases
challenging thus the universal presence of the putative obscuring torus.Comment: 4 pages, 6 color figures, To appear in the Proceedings of the IAU
Symp. 222: "The Interplay among Black Holes, Stars and ISM in Galactic
Nuclei" held in Gramado, Brazil, March 200
Modeling a Slicer Mirror Using Zemax User-Defined Surface
A slicer mirror is a complex surface composed by many tilted and decentered
mirrors sub-surfaces. The major difficulty to model such a complex surface is
the large number of parameters used to define it. The Zemax's
multi-configuration mode is usually used to specify each parameters (tilts,
curvatures, decenters) for each mirror sub-surface which are then considered
independently. Otherwise making use of the User-Defined Surface (UDS-DLL) Zemax
capability, we are able to consider the set of sub-surfaces as a whole surface.
In this paper, we present such a UDS-DLL tool comparing its performance with
those of the classical multi-configuration mode. In particular, we explore the
use of UDS-DLL to investigate the cross-talk due to the diffraction on the
slicer array mirrors which has been a burden task when using
multi-configuration mode.Comment: Submitted to the proceedings of the Durham Integral Field
Spectroscopy Workshop July 4th-8th 200
Chemical Abundances from the Continuum
The calculation of solar absolute fluxes in the near-UV is revisited,
discussing in some detail recent updates in theoretical calculations of
bound-free opacity from metals. Modest changes in the abundances of elements
such as Mg and the iron-peak elements have a significant impact on the
atmospheric structure, and therefore self-consistent calculations are
necessary. With small adjustments to the solar photospheric composition, we are
able to reproduce fairly well the observed solar fluxes between 200 and 270 nm,
and between 300 and 420 nm, but find too much absorption in the 270-290 nm
window. A comparison between our reference 1D model and a 3D time-dependent
hydrodynamical simulation indicates that the continuum flux is only weakly
sensitive to 3D effects, with corrections reaching <10% in the near-UV, and <2%
in the optical.Comment: 10 pages, 5 figures, to appear in the proceedings of the conference A
Stellar Journey, a symposium in celebration of Bengt Gustafsson's 65th
birthday, June 23-27, 2008, Uppsal
Near-infrared spectroscopy of nearby Seyfert galaxies - II. Molecular content and coronal emission
We present sub-arcsec near-infrared 1.5 - 2.5 micron moderate resolution
long-slit spectra of eight nearby Seyfert galaxies (z<0.01), both parallel to
the ionization cone and perpendicular to it. These spectra complement similar
data on six Seyferts, presented in Reunanen, Kotilainen & Prieto (2002). Large
concentrations of molecular gas (H2) are present in the nucleus regardless of
the Seyfert type. The spatial extent of the H2 emission is larger perpendicular
to the cone than parallel to it in 6/8 (75 %) galaxies, in agreement with the
unified models of Active Galactic Nuclei. Broad BrGamma was detected in nearly
half of the optically classified Seyfert 2 galaxies, including two objects with
no evidence for hidden polarized Broad Line Region. Nuclear [FeII] emission is
generally blueshifted which together with high BrGamma/[FeII] ratios suggests
shocks as the dominant excitation mechanism in Seyfert galaxies. Bright coronal
emission lines [SiVI] and [SiVII] are common in Seyferts, as they are detected
in ~60 % of the galaxies. In three galaxies the coronal lines are extended only
in the direction parallel to the cone. This could be explained by shock
excitation due to the jet or superwind interacting with the interstellar
medium.Comment: 19 pages, accepted for publication in MNRA
- …