2,810 research outputs found
OH emission from cometary knots in planetary nebulae
We model the molecular emission from cometary knots in planetary nebulae
(PNe) using a combination of photoionization and photodissociation region (PDR)
codes, for a range of central star properties and gas densities. Without the
inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require
central star temperatures to be near the upper limit of the range
investigated in order to match observed H and OH surface brightnesses
consistent with observations - with the addition of EUV flux, our models
reproduce observed OH surface brightnesses for .
For , the predicted OH surface brightness is much
lower, consistent with the non-detection of this molecule in PNe with such
central star temperatures. Our predicted level of H emission is somewhat
weaker than commonly observed in PNe, which may be resolved by the inclusion of
shock heating or fluorescence due to UV photons. Some of our models also
predict ArH and HeH rotational line emission above detection
thresholds, despite neither molecule having been detected in PNe, although the
inclusion of photodissociation by EUV photons, which is neglected by our
models, would be expected to reduce their detectability.Comment: Accepted by MNRAS, 11 pages, 15 figures. Author accepted manuscript.
Accepted on 24/04/18. Deposited on 27/04/1
Modelling the ArH emission from the Crab Nebula
We have performed combined photoionization and photodissociation region (PDR)
modelling of a Crab Nebula filament subjected to the synchrotron radiation from
the central pulsar wind nebula, and to a high flux of charged particles; a
greatly enhanced cosmic ray ionization rate over the standard interstellar
value, , is required to account for the lack of detected [C I]
emission in published Herschel SPIRE FTS observations of the Crab Nebula. The
observed line surface brightness ratios of the OH and ArH transitions
seen in the SPIRE FTS frequency range can only be explained with both a high
cosmic ray ionization rate and a reduced ArH dissociative recombination
rate compared to that used by previous authors, although consistent with
experimental upper limits. We find that the ArH/OH line strengths and
the observed H vibration-rotation emission can be reproduced by model
filaments with cm,
and visual extinctions within the range found for dusty globules in the Crab
Nebula, although far-infrared emission from [O I] and [C II] is higher than the
observational constraints. Models with cm
underpredict the H surface brightness, but agree with the ArH and
OH surface brightnesses and predict [O I] and [C II] line ratios consistent
with observations. These models predict HeH rotational emission above
detection thresholds, but consideration of the formation timescale suggests
that the abundance of this molecule in the Crab Nebula should be lower than the
equilibrium values obtained in our analysis.Comment: Accepted by MNRAS. Author accepted manuscript. Accepted on
05/09/2017. Deposited on 05/09/1
Towards the “ultimate earthquake-proof” building: Development of an integrated low-damage system
The 2010–2011 Canterbury earthquake sequence has highlighted the
severe mismatch between societal expectations over the reality of seismic performance
of modern buildings. A paradigm shift in performance-based design criteria
and objectives towards damage-control or low-damage design philosophy and
technologies is urgently required. The increased awareness by the general public,
tenants, building owners, territorial authorities as well as (re)insurers, of the severe
socio-economic impacts of moderate-strong earthquakes in terms of damage/dollars/
downtime, has indeed stimulated and facilitated the wider acceptance and
implementation of cost-efficient damage-control (or low-damage) technologies.
The ‘bar’ has been raised significantly with the request to fast-track the development
of what the wider general public would hope, and somehow expect, to live
in, i.e. an “earthquake-proof” building system, capable of sustaining the shaking of
a severe earthquake basically unscathed.
The paper provides an overview of recent advances through extensive research,
carried out at the University of Canterbury in the past decade towards the development
of a low-damage building system as a whole, within an integrated
performance-based framework, including the skeleton of the superstructure, the
non-structural components and the interaction with the soil/foundation system.
Examples of real on site-applications of such technology in New Zealand, using
concrete, timber (engineered wood), steel or a combination of these materials, and
featuring some of the latest innovative technical solutions developed in the laboratory
are presented as examples of successful transfer of performance-based seismic
design approach and advanced technology from theory to practice
Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems
Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance
Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene
The glass transition temperature and relaxation dynamics of the segmental
motions of thin films of polystyrene labeled with a dye,
4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are
investigated using dielectric measurements. The dielectric relaxation strength
of the DR1-labeled polystyrene is approximately 65 times larger than that of
the unlabeled polystyrene above the glass transition, while there is almost no
difference between them below the glass transition. The glass transition
temperature of the DR1-labeled polystyrene can be determined as a crossover
temperature at which the temperature coefficient of the electric capacitance
changes from the value of the glassy state to that of the liquid state. The
glass transition temperature of the DR1-labeled polystyrene decreases with
decreasing film thickness in a reasonably similar manner to that of the
unlabeled polystyrene thin films. The dielectric relaxation spectrum of the
DR1-labeled polystyrene is also investigated. As thickness decreases, the
-relaxation time becomes smaller and the distribution of the
-relaxation times becomes broader. These results show that thin films
of DR1-labeled polystyrene are a suitable system for investigating confinement
effects of the glass transition dynamics using dielectric relaxation
spectroscopy.Comment: 10 pages, 11 figures, 2 Table
The development of direct payments in the UK: implications for social justice
Direct payments have been heralded by the disability movement as an important means to
achieving independent living and hence greater social justice for disabled people through
enhanced recognition as well as financial redistribution. Drawing on data from the ESRC
funded project Disabled People and Direct Payments: A UK Comparative Perspective,
this paper presents an analysis of policy and official statistics on use of direct payments
across the UK. It is argued that the potential of direct payments has only partly been
realised as a result of very low and uneven uptake within and between different parts
of the UK. This is accounted for in part by resistance from some Labour-controlled local
authorities, which regard direct payments as a threat to public sector jobs. In addition,
access to direct payments has been uneven across impairment groups. However, from a
very low base there has been a rapid expansion in the use of direct payments over the
past three years. The extent to which direct payments are able to facilitate the ultimate
goal of independent living for disabled people requires careful monitoring
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases
A mathematical model for the sequestering of chemical contaminants by magnetic particles
A mathematical model is developed and implemented to characterize the pickup of various liquid chemical contaminants by
polyethylene-coated magnetic particles. The model and its associated experimental and analytical protocols were applied to a wide range
of liquid chemicals in order to gain insights into the physical basis for the pickup phenomenon. The characteristics of the pickup isotherms
range between “ideal” and “nonideal” behaviors that are reflected in the mathematical model by a single parameter, �0, where �0=1
corresponds to ideal behavior and �0�1 corresponds to a departure from idealized behavior that is directly quantified by the magnitude
of �0. The parameter �0 is also related to the efficiency of pickup, and since most isotherms observed in the study deviate from ideality,
the high efficiency of pickup observed in these systems has been attributed in part to this deviation. The proposed model and its associated
experimental and analytical protocols demonstrate great potential for the systematic evaluation of the uptake of chemical contaminants
using magnetic particle technology
Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications
We use teleseismic waveform inversion, along with depth phase analysis, to constrain the centroid depths and source parameters of large African earthquakes. The majority of seismic activity is concentrated along the East African Rift System, with additional active regions along stretches of the continental margins in north and east Africa, and in the Congo Basin. We examine variations in the seismogenic thickness across Africa, based on a total of 227 well-determined earthquake depths, 112 of which are new to this study. Seismogenic thickness varies in correspondence with lithospheric thickness, as determined from surface wave tomography, with regions of thick lithosphere being associated with seismogenic thicknesses of up to 40 km. In regions of thin lithosphere, the seismogenic thickness is typically limited to ≤20 km. Larger seismogenic thicknesses also correlate with regions that have dominant tectonothermal ages of ≥1500 Ma, where the East African Rift passes around the Archean cratons of Africa, through the older Proterozoic mobile belts. These correlations are likely to be related to the production, affected by method and age of basement formation, and preservation, affected by lithospheric thickness, of a strong, anhydrous lower crust. The Congo Basin contains the only compressional earthquakes in the continental interior. Simple modelling of the forces induced by convective support of the African plate, based on long-wavelength free-air gravity anomalies, indicates that epeirogenic effects are sufficient to account for the localization and occurrence of both extensional and compressional deformation in Africa. Seismicity along the margins of Africa reflects a mixture between oceanic and continental seismogenic characteristics, with earthquakes in places extending to 40 km depth
Cogeneration Technology Alternatives Study (CTAS). Volume 2: Analytical approach
The use of various advanced energy conversion systems were compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. The ground rules established by NASA and assumptions made by the General Electric Company in performing this cogeneration technology alternatives study are presented. The analytical methodology employed is described in detail and is illustrated with numerical examples together with a description of the computer program used in calculating over 7000 energy conversion system-industrial process applications. For Vol. 1, see 80N24797
- …
