45 research outputs found

    Pharmacokinetics and pharmacodynamics of fenoldopam mesylate for blood pressure control in pediatric patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fenoldopam mesylate, a selective dopamine1-receptor agonist, is used by intravenous infusion to treat hypertension in adults. Fenoldopam is not approved by the FDA for use in children; reports describing its use in pediatrics are limited. In a multi-institutional, placebo controlled, double-blind, multi-dose trial we determined the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics and side-effect profile of fenoldopam in children.</p> <p>Methods</p> <p>Seventy seven (77) children from 3 weeks to 12 years of age scheduled for surgery in which deliberate hypotension would be induced were enrolled. Patients were randomly assigned to one of five, blinded treatment groups (placebo or fenoldopam 0.05, 0.2, 0.8, or 3.2 mcg/kg/min iv) for a 30-minute interval after stabilization of anesthesia and placement of vascular catheters. Following the 30-minute blinded interval, investigators adjusted the fenoldopam dose to achieve a target mean arterial pressure in the open-label period until deliberate hypotension was no longer indicated (e.g., muscle-layer closure). Mean arterial pressure and heart rate were continuously monitored and were the primary endpoints.</p> <p>Results</p> <p>Seventy-six children completed the trial. Fenoldopam at doses of 0.8 and 3.2 mcg/kg/min significantly reduced blood pressure (p < 0.05) during the blinded interval, and doses of 1.0–1.2 mcg/kg/min resulted in continued control of blood pressure during the open-label interval. Doses greater than 1.2 mcg/kg/min during the open-label period resulted in increasing heart rate without additional reduction in blood pressure. Fenoldopam was well-tolerated; side effects occurred in a minority of patients. The PK/PD relationship of fenoldopam in children was determined.</p> <p>Conclusion</p> <p>Fenoldopam is a rapid-acting, effective agent for intravenous control of blood pressure in children. The effective dose range is significantly higher in children undergoing anesthesia and surgery (0.8–1.2 mcg/kg/min) than as labeled for adults (0.05–0.3 mcg/kg/min). The PK and side-effect profiles for children and adults are similar.</p

    A Markov computer simulation model of the economics of neuromuscular blockade in patients with acute respiratory distress syndrome

    Get PDF
    BACKGROUND: Management of acute respiratory distress syndrome (ARDS) in the intensive care unit (ICU) is clinically challenging and costly. Neuromuscular blocking agents may facilitate mechanical ventilation and improve oxygenation, but may result in prolonged recovery of neuromuscular function and acute quadriplegic myopathy syndrome (AQMS). The goal of this study was to address a hypothetical question via computer modeling: Would a reduction in intubation time of 6 hours and/or a reduction in the incidence of AQMS from 25% to 21%, provide enough benefit to justify a drug with an additional expenditure of 267(thedifferenceinacquisitioncostbetweenagenericandbrandnameneuromuscularblocker)?METHODS:Thebasecasewasa55yearoldmanintheICUwithARDSwhoreceivesneuromuscularblockadefor3.5days.AMarkovmodelwasdesignedwithhypotheticalpatientsin1of6mutuallyexclusivehealthstates:ICUintubated,ICUextubated,hospitalward,longtermcare,home,ordeath,overaperiodof6months.Thenetmonetarybenefitwascomputed.RESULTS:OurcomputersimulationmodelingpredictedthemeancostforARDSpatientsreceivingstandardcarefor6monthstobe267 (the difference in acquisition cost between a generic and brand name neuromuscular blocker)? METHODS: The base case was a 55 year-old man in the ICU with ARDS who receives neuromuscular blockade for 3.5 days. A Markov model was designed with hypothetical patients in 1 of 6 mutually exclusive health states: ICU-intubated, ICU-extubated, hospital ward, long-term care, home, or death, over a period of 6 months. The net monetary benefit was computed. RESULTS: Our computer simulation modeling predicted the mean cost for ARDS patients receiving standard care for 6 months to be 62,238 (5% – 95% percentiles 42,25942,259 – 83,766), with an overall 6-month mortality of 39%. Assuming a ceiling ratio of 35,000,evenifadrug(thatcost35,000, even if a drug (that cost 267 more) hypothetically reduced AQMS from 25% to 21% and decreased intubation time by 6 hours, the net monetary benefit would only equal $137. CONCLUSION: ARDS patients receiving a neuromuscular blocker have a high mortality, and unpredictable outcome, which results in large variability in costs per case. If a patient dies, there is no benefit to any drug that reduces ventilation time or AQMS incidence. A prospective, randomized pharmacoeconomic study of neuromuscular blockers in the ICU to asses AQMS or intubation times is impractical because of the highly variable clinical course of patients with ARDS

    Anaesthesia and PET of the Brain

    Get PDF
    Although drugs have been used to administer general anaesthesia for more than a century and a half, relatively little was known until recently about the molecular and cellular effects of the anaesthetic agents and the neurobiology of anaesthesia. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have played a valuable role in improving this knowledge. PET studies using 11C-flumazenil binding have been used to demonstrate that the molecular action of some, but not all, of the current anaesthetic agents is mediated via the GABAA receptor. Using different tracers labelled with 18F, 11C and 15O, PET studies have shown the patterns of changes in cerebral metabolism and blood flow associated with different intravenous and volatile anaesthetic agents. Within classes of volatile agents, there are minor variations in patterns. More profound differences are found between classes of agents. Interestingly, all agents cause alterations in the blood flow and metabolism of the thalamus, providing strong support for the hypothesis that the anaesthetic agents interfere with consciousness by interfering with thalamocortical communication.</p

    Postoperative Care following Single-Stage Laryngotracheoplasty

    No full text

    Stethoscopy

    No full text
    corecore