143 research outputs found

    Highlights from TeV Extragalactic Sources

    Full text link
    The number of discovered TeV sources populating the extragalactic sky in 2017 is nearly 70, mostly blazars located up to a redshift ~1. Ten years ago, in 2007, less than 20 TeV emitters were known, up to a maximum redshift of 0.2. This is a major achievement of current generation of Cherenkov telescopes operating in synergy with optical, X-ray, and GeV gamma-ray telescopes. A review of selected results from the extragalactic TeV sky is presented, with particular emphasis on recently detected distant sources.Comment: 12 pages, invited review talk at the conference: Moriond 2017 (VHE Phenomena in the Universe). New version with a minor correction and one reference update

    Blazars distance indications from Fermi and TeV data

    Get PDF
    A new method to constrain the distance of blazars with unknown redshift using combined observations in the GeV and TeV regimes will be presented. The underlying assumption is that the Very High Energy (VHE) spectrum corrected for the absorption of TeV photons by the Extragalactic Background Light (EBL) via photon-photon interaction should still be softer than the extrapolation of the gamma-ray spectrum observed by Fermi/LAT. Starting from the observed spectral data at VHE, the EBL-corrected spectra are derived as a function of the redshift z and fitted with power laws. Comparing the redshift dependent VHE slopes with the power law fits to the LAT data an upper limit to the source redshift can be derived. The method is applied to all TeV blazars detected by LAT with known distance and an empirical law describing the relation between the upper limits and the true redshifts is derived. This law can be used to estimate the distance of unknown redshift blazars: as an example, the distance of PKS 1424+240 is inferred.Comment: Contribution to SciNeGHE 2010, Trieste, Italy, September 2010; 4 pages, 2 figur

    TeV blazars and their distance

    Full text link
    Recently, a new method to constrain the distance of blazars with unknown redshift using combined observations in the GeV and TeV regimes has been developed, with the underlying assumption that the Very High Energy (VHE) spectrum corrected for the absorption of TeV photons by the Extragalactic Background Light (EBL) via photon-photon interaction should still be softer than the gamma-ray spectrum observed by Fermi/LAT. The constraints found are related to the real redshifts by a simple linear relation, that has been used to infer the unknown distance of blazars. The sample will be revised with the up-to-date spectra in both TeV and GeV bands, the method tested with the more recent EBL models and finally applied to the unknown distance blazars detected at VHE.Comment: Contribution to "Cosmic Radiation Fields: Sources in the early Universe", Desy, Germany, November 9-12, 2010; 6 pages, 3 figures (revised version

    Measurement of the EBL through a combined likelihood analysis of gamma-ray observations of blazars with the MAGIC telescopes

    Full text link
    The extragalactic background light (EBL) is the radiation accumulated through the history of the Universe in the wavelength range from the ultraviolet to the far infrared. Local foregrounds make the direct measurement of the diffuse EBL notoriously difficult, while robust lower limits have been obtained by adding up the contributions of all the discrete sources resolved in deep infrared and optical galaxy observations. Gamma-ray astronomy has emerged in the past few years as a powerful tool for the study of the EBL: very-high-energy (VHE) photons traversing cosmological distances can interact with EBL photons to produce e+^+e^- pairs, resulting in an energy-dependent depletion of the gamma-ray flux of distant sources that can be used to set constraints on the EBL density. The study of the EBL is one of the key scientific programs currently carried out by the MAGIC collaboration. We present here the results of the analysis of 32 VHE spectra of 12 blazars in the redshift range 0.03 - 0.94, obtained with over 300 hours of observations with the MAGIC telescopes between 2010 and 2016. A combined likelihood maximization approach is used to evaluate the density and spectrum of the EBL most consistent with the MAGIC observations. The results are compatible with state-of-the-art EBL models, and constrain the EBL density to be roughly within 20%\simeq 20\% of the nominal value in such models. The study reveals no anomalies in gamma-ray propagation in the large optical depth regime - contrary to some claims based on meta-analyses of published VHE spectra.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea (arXiv:1708.05153
    corecore