39 research outputs found

    Myocarditis in CD8-Depleted SIV-Infected Rhesus Macaques after Short-Term Dual Therapy with Nucleoside and Nucleotide Reverse Transcriptase Inhibitors

    Get PDF
    Background: Although highly active antiretroviral therapy (HAART) has dramatically reduced the morbidity and mortality associated with HIV infection, a number of antiretroviral toxicities have been described, including myocardial toxicity resulting from the use of nucleotide and nucleoside reverse transcriptase inhibitors (NRTIs). Current treatment guidelines recommend the use of HAART regimens containing two NRTIs for initial therapy of HIV-1 positive individuals; however, potential cardiotoxicity resulting from treatment with multiple NRTIs has not been addressed. Methodology/Principal Findings: We examined myocardial tissue from twelve CD8 lymphocyte-depleted adult rhesus macaques, including eight animals infected with simian immunodeficiency virus, four of which received combined antiretroviral therapy (CART) consisting of two NRTIs [(9-R-2-Phosphonomethoxypropyl Adenine) (PMPA) and (+/−)-beta-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (RCV)] for 28 days. Multifocal infiltrates of mononuclear inflammatory cells were present in the myocardium of all macaques that received CART, but not untreated SIV-positive animals or SIV-negative controls. Macrophages were the predominant inflammatory cells within lesions, as shown by immunoreactivity for the macrophage markers Iba1 and CD68. Heart specimens from monkeys that received CART had significantly lower virus burdens than untreated animals (p<0.05), but significantly greater quantities of TNF-α mRNA than either SIV-positive untreated animals or uninfected controls (p<0.05). Interferon-γ (IFN-γ), IL-1β and CXCL11 mRNA were upregulated in heart tissue from SIV-positive monkeys, independent of antiretroviral treatment, but CXCL9 mRNA was only upregulated in heart tissue from macaques that received CART. Conclusions/Significance: These results suggest that short-term treatment with multiple NRTIs may be associated with myocarditis, and demonstrate that the CD8-depleted SIV-positive rhesus monkey is a useful model for studying the cardiotoxic effects of combined antiretroviral therapy in the setting of immunodeficiency virus infection

    Hot Gas Cleaning, Sulfiding Mechanisms in Absorption of H2S by Solids

    No full text

    Kinetics and Mechanism of Cellulose Pyrolysis

    No full text
    In this paper we report the kinetics and chemistry of cellulose pyrolysis using both a Pyroprobe reactor and a thermogravimetric analyzer mass spectrometer (TGA-MS). We have identified more than 90% of the products from cellulose pyrolysis in a Pyroprobe reactor with a liquid nitrogen trap. The first step in the cellulose pyrolysis is the depolymerization of solid cellulose to form levoglucosan (LGA; 6,8-dioxabicyclo[3.2.1]octane-2,3,4-triol). LGA can undergo dehydration and isomerization reactions to form other anhydrosugars including levoglucosenone (LGO; 6,8-dioxabicyclo[3.2.1]oct-2-en-4-one), 1,4:3,6-dianhydro-β-d-glucopyranose (DGP) and 1,6-anhydro-β-d-glucofuranose (AGF; 2,8-dioxabicyclo[3.2.1]octane-4,6,7-triol). The anhydrosugars can react further to form furans, such as furfural (furan-2-carbaldehyde) and hydroxymethylfurfural (HMF; 5-(hydroxymethyl)furan-2-carbaldehyde) by dehydration reactions or hydroxyacetone (1-hydroxypropan-2-one), glycolaldehyde (2-hydroxyacetaldehyde), and glyceraldehyde (2,3-dihydroxypropanal) by fragmentation and retroaldol condensation reactions. Carbon monoxide and carbon dioxide are formed from decarbonylation and decarboxylation reactions. Char is formed from polymerization of the pyrolysis products. The pyrolytic conversion of cellulose was fitted to two different reaction models. The first model (Model I) combined the first-order kinetic model with a thermal-lag model that assumed the temperature difference between the thermocouple and specimen in TGA to be directly proportional to the heating rate. The second model (Model II) combined the first-order kinetic model with an energy balance that took into account the heat transfer at the sample boundary including the heat flow by endothermic pyrolysis reaction. Both models were able to adequately fit the empirical data. The kinetic parameters obtained from both models were similar. Cellulose pyrolysis had an activation energy of 198 kJ mol−1. Model I is computationally easier, however Model II is physically more realistic. Importantly, our results indicate that the intrinsic kinetics for cellulose pyrolysis are not a function of heating rate. During the pyrolysis of cellulose a thermal temperature gradient between the cellulose and heater can occur due to the endothermic pyrolysis reaction. A faster heating rate can magnify the thermal-lag, which leads kinetic derivations to artificial outcomes
    corecore