6,991 research outputs found
Plug in to grid computing
This article discusses the potential benefits of grid computing for future power networks. It is also intended to alert the power system community to the concept of grid computing and to initiate a discussion of its potential applications in future power systems. Much like the Web, the grid can operate over the Internet or any other suitable computer networking technology. Grid computing offers an inexpensive and efficient means for participants to compete (but also cooperate) in providing reliable, cheap, and sustainable electrical energy supply. It also provides a relatively inexpensive new technology allowing the output of embedded generators to be monitored and, when necessary, controlled. Basically, the ability of grid-enabled systems to interact autonomously is vital for small generators where manned operation is likely to be viable
A study of publish/subscribe systems for real-time grid monitoring
Monitoring and controlling a large number of geographically distributed scientific instruments is a challenging task. Some operations on these instruments require real-time (or quasi real-time) response which make it even more difficult. In this paper, we describe the requirements of distributed monitoring for a possible future electrical power grid based on real-time extensions to grid computing. We examine several standards and publish/subscribe middleware candidates, some of which were specially designed and developed for grid monitoring. We analyze their architecture and functionality, and discuss the advantages and disadvantages. We report on a series of tests to measure their real-time performance and scalability
Distributed monitoring and control of future power systems via grid computing
It is now widely accepted within the electrical power supply industry that future power systems operates with significantly larger numbers of small-scale highly dispersed generation units that use renewable energy sources and also reduce carbon dioxide emissions. In order to operate such future power systems securely and efficiently it will be necessary to monitor and control output levels and scheduling when connecting such generation to a power system especially when it is typically embedded at the distribution level. Traditional monitoring and control technology that is currently employed at the transmission level is highly centralized and not scalable to include such significant increases in distributed and embedded generation. However, this paper proposes and demonstrates the adoption of a relatively new technology 'grid computing' that can provide both a scalable and universally adoptable solution to the problems associated with the distributed monitoring and control of future power systems
A multi-agent model for assessing electricity tariffs
This paper describes the framework for modelling a multi-agent approach for assessing dynamic pricing of electricity and demand response. It combines and agent-based model with decision-making data, and a standard load-flow model. The multi-agent model described here represents a tool in investigating not only the relation between different dynamic tariffs and consumer load profiles, but also the change in behaviour and impact on low-voltage electricity distribution networks.The authors acknowledge the contribution of the EPSRC Transforming Energy Demand Through Digital Innovation Programme, grant agreement numbers EP/I000194/1 and EP/I000119/1, to the ADEPT project
Recommended from our members
Grid computing technologies for renewable electricity generator monitoring and control
In this paper we discuss the use of real-time Grid computing for the monitoring, control and simulation of renewable electricity generators and their associated electrical networks. We discuss briefly the architectural design of GRIDCC and how we have integrated a number of real (solar, CHP) and simulated conventional power generators into the GRIDCC environment. A local weather station has also been attached to an Instrument Manager to alert experts appropriately when the Solar Array is not generating. The customised remote control and monitoring environment (a virtual control room), distributed using a standard web server, is discussed
Recommended from our members
Numerical Simulations of Melt-Driven Double-Diffusive Fluxes in a Turbulent Boundary Layer beneath an Ice Shelf
AbstractThe transport of heat and salt through turbulent ice shelfâocean boundary layers is a large source of uncertainty within ocean models of ice shelf cavities. This study uses small-scale, high-resolution, 3D numerical simulations to model an idealized boundary layer beneath a melting ice shelf to investigate the influence of ambient turbulence on double-diffusive convection (i.e., convection driven by the difference in diffusivities between salinity and temperature). Isotropic turbulence is forced throughout the simulations and the temperature and salinity are initialized with homogeneous values similar to observations. The initial temperature and the strength of forced turbulence are varied as controlling parameters within an oceanographically relevant parameter space. Two contrasting regimes are identified. In one regime double-diffusive convection dominates, and in the other convection is inhibited by the forced turbulence. The convective regime occurs for high temperatures and low turbulence levels, where it is long lived and affects the flow, melt rate, and melt pattern. A criterion for identifying convection in terms of the temperature and salinity profiles, and the turbulent dissipation rate, is proposed. This criterion may be applied to observations and theoretical models to quantify the effect of double-diffusive convection on ice shelf melt rates.</jats:p
- âŠ