29 research outputs found

    Investigation of relationship between vitamin D status and reproductive fitness in Scottish hill sheep

    Get PDF
    There is a growing interest in the influence of vitamin D on ovine non-skeletal health. The aim of this study was to explore the relationship between pre-mating vitamin D status, as assessed by serum concentrations of 25-Hydroxyvitamin D [25(OH)D; comprising D2 and D3] and subsequent reproductive performance of genetically unimproved Scottish Blackface (UBF), genetically improved Scottish Blackface (IBF) and Lleyn ewes kept under Scottish hill conditions. 25-Hydroxyvitamin D2 (25(OH)D2) and 25-Hydroxyvitamin D3 (25(OH)D3) concentrations were determined in serum samples harvested in November from ewes grazed outdoors. There were no significant differences in 25(OH)D2concentrations amongst the 3 genotypes. Lleyn ewes had significantly higher 25(OH)D3 and 25(OH)D concentrations than both Scottish Blackface ewe genotypes, whereas these vitamin D parameters did not differ significantly between the UBF and IBF ewes. Concentrations of 25(OH)D3 and 25(OH)D were positively associated with subsequent birth weights of singleton and of twin lamb litters. No significant associations between vitamin D status and number of lambs born or weaned per ewe were found. This study demonstrates that concentrations of cutaneously-derived 25(OH)D3, but not of orally consumed 25(OH)D2, differed between breeds. The positive association between ewe vitamin D status and offspring birth weight highlights the need for further investigations

    Effects of membrane depolarization and changes in extracellular [K+] on the Ca2+ transients of fast skeletal muscle fibers. Implications for muscle fatigue

    Get PDF
    Repetitive activation of skeletal muscle fibers leads to a reduced transmembrane K+ gradient. The resulting membrane depolarization has been proposed to play a major role in the onset of muscle fatigue. Nevertheless, raising the extracellular K+ (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ko+ {\text{K}}_{\text{o}}^{ + } \end{document}) concentration (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[K+]o [ {\text{K}}^{ + } ]_{\text{o}} \end{document}) to 10 mM potentiates twitch force of rested amphibian and mammalian fibers. We used a double Vaseline gap method to simultaneously record action potentials (AP) and Ca2+ transients from rested frog fibers activated by single and tetanic stimulation (10 pulses, 100 Hz) at various \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[K+]o [ {\text{K}}^{ + } ]_{\text{o}} \end{document} and membrane potentials. Depolarization resulting from current injection or raised \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[K+]o [ {\text{K}}^{ + } ]_{\text{o}} \end{document} produced an increase in the resting [Ca2+]. Ca2+ transients elicited by single stimulation were potentiated by depolarization from −80 to −60 mV but markedly depressed by further depolarization. Potentiation was inversely correlated with a reduction in the amplitude, overshoot and duration of APs. Similar effects were found for the Ca2+ transients elicited by the first pulse of 100 Hz trains. Depression or block of Ca2+ transient in response to the 2nd to 10th pulses of 100 Hz trains was observed at smaller depolarizations as compared to that seen when using single stimulation. Changes in Ca2+ transients along the trains were associated with impaired or abortive APs. Raising \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[K+]o [ {\text{K}}^{ + } ]_{\text{o}} \end{document} to 10 mM potentiated Ca2+ transients elicited by single and tetanic stimulation, while raising \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}[K+]o [ {\text{K}}^{ + } ]_{\text{o}} \end{document} to 15 mM markedly depressed both responses. The effects of 10 mM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ko+ {\text{K}}_{\text{o}}^{ + } \end{document} on Ca2+ transients, but not those of 15 mM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ko+ {\text{K}}_{\text{o}}^{ + } \end{document}, could be fully reversed by hyperpolarization. The results suggests that the force potentiating effects of 10 mM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ko+ {\text{K}}_{\text{o}}^{ + } \end{document} might be mediated by depolarization dependent changes in resting [Ca2+] and Ca2+ release, and that additional mechanisms might be involved in the effects of 15 mM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ko+ {\text{K}}_{\text{o}}^{ + } \end{document} on force generation
    corecore