698 research outputs found
Global urinary volatolomics with (GCΓ)GC-TOF-MS
Urinary volatolomics offers a noninvasive approach for disease detection and monitoring. Herein we present an improved methodology for global volatolomic profiling. Wide coverage was achieved by utilizing a multiphase sorbent for volatile organic compound (VOC) extraction. A single, midpolar column gas chromatography (GC) assay yielded substantially higher numbers of monitored VOCs compared to our previously reported single-sorbent method. Multidimensional GC (GCΓGC) enhanced further biomarker discovery while data analysis was simplified by using a tile-based approach. At the same time, the required urine volume was reduced 5-fold from 2 to 0.4 mL. The applicability of the methodology was demonstrated in a pancreatic ductal adenocarcinoma cohort where previous findings were confirmed while a series of additional VOCs with diagnostic potential were discovered
Feasibility and acceptability of breath research in primary care: a prospective, cross-sectional, observational study.
OBJECTIVES: To examine the feasibility and acceptability of breath research in primary care. DESIGN: Non-randomised, prospective, mixed-methods cross-sectional observational study. SETTING: Twenty-six urban primary care practices. PARTICIPANTS: 1002 patients aged 18-90 years with gastrointestinal symptoms. MAIN OUTCOME MEASURES: During the first 6 months of the study (phase 1), feasibility of patient enrolment using face-to-face, telephone or SMS-messaging (Short Message Service) enrolment strategies, as well as processes for breath testing at local primary care practices, were evaluated. A mixed-method iterative study design was adopted and outcomes evaluated using weekly Plan-Do-Study-Act cycles, focus groups and general practitioner (GP) questionnaires.During the second 6 months of the study (phase 2), patient and GP acceptability of the breath test and testing process was assessed using questionnaires. In addition a 'single practice' recruitment model was compared with a 'hub and spoke' centralised recruitment model with regards to enrolment ability and patient acceptability.Throughout the study feasibility of the collection of a large number of breath samples by clinical staff over multiple study sites was evaluated and quantified by the analysis of these samples using mass spectrometry. RESULTS: 1002 patients were recruited within 192 sampling days. Both 'single practice' and 'hub and spoke' recruitment models were effective with an average of 5.3 and 4.3 patients accrued per day, respectively. The 'hub and spoke' model with SMS messaging was the most efficient combined method of patient accrual. Acceptability of the test was high among both patients and GPs. The methodology for collection, handling and analysis of breath samples was effective, with 95% of samples meeting quality criteria. CONCLUSIONS: Large-scale breath testing in primary care was feasible and acceptable. This study provides a practical framework to guide the design of Phase III trials examining the performance of breath testing in primary care
Systematic review and validation of clinical models predicting survival after oesophagectomy for adenocarcinoma
BACKGROUND: Oesophageal adenocarcinoma poses a significant global health burden, yet the staging used to predict survival has limited ability to stratify patients by outcome. This study aimed to identify published clinical models that predict survival in oesophageal adenocarcinoma and to evaluate them using an independent international multicentre dataset. METHODS: A systematic literature search (title and abstract) using the Ovid Embase and MEDLINE databases (from 1947 to 11 July 2020) was performed. Inclusion criteria were studies that developed or validated a clinical prognostication model to predict either overall or disease-specific survival in patients with oesophageal adenocarcinoma undergoing surgical treatment with curative intent. Published models were validated using an independent dataset of 2450 patients who underwent oesophagectomy for oesophageal adenocarcinoma with curative intent. RESULTS: Seventeen articles were eligible for inclusion in the study. Eleven models were suitable for testing in the independent validation dataset and nine of these were able to stratify patients successfully into groups with significantly different survival outcomes. Area under the receiver operating characteristic curves for individual survival prediction models ranged from 0.658 to 0.705, suggesting poor-to-fair accuracy. CONCLUSION: This study highlights the need to concentrate on robust methodologies and improved, independent, validation, to increase the likelihood of clinical adoption of survival predictions models
A complete pipeline for untargeted urinary volatolomic profiling with sorptive extraction and dual polar and nonpolar column methodologies coupled with gas chromatography time-of-flight mass spectrometry.
Volatolomics offers an opportunity for noninvasive detection and monitoring of human disease. While gas chromatography-mass spectrometry (GC-MS) remains the technique of choice for analyzing volatile organic compounds (VOCs), barriers to wider adoption in clinical practice still exist, including: sample preparation and introduction techniques, VOC extraction, throughput, volatolome coverage, biological interpretation, and quality control (QC). Therefore, we developed a complete pipeline for untargeted urinary volatolomic profiling. We optimized a novel extraction technique using HiSorb sorptive extraction, which exhibited high analytical performance and throughput. We achieved a broader VOC coverage by using HiSorb coupled with a set of complementary chromatographic methods and time-of-flight mass spectrometry. Furthermore, we developed a data preprocessing strategy by evaluating internal standard normalization, batch correction, and we adopted strict QC measures including removal of nonlinearly responding, irreproducible, or contaminated metabolic features, ensuring the acquisition of high-quality data. The applicability of this pipeline was evaluated in a clinical cohort consisting of pancreatic ductal adenocarcinoma (PDAC) patients (n = 28) and controls (n = 33), identifying four urinary candidate biomarkers (2-pentanone, hexanal, 3-hexanone, and p-cymene), which can successfully discriminate the cancer and noncancer subjects. This study presents an optimized, high-throughput, and quality-controlled pipeline for untargeted urinary volatolomic profiling. Use of the pipeline to discriminate PDAC from control subjects provides proof of principal of its clinical utility and potential for application in future biomarker discovery studies
Cardiorespiratory comorbidity and postoperative complications following esophagectomy: a European multicenter cohort study
BACKGROUND: The impact of cardiorespiratory comorbidity on operative outcomes after esophagectomy remains controversial. This study investigated the effect of cardiorespiratory comorbidity on postoperative complications for patients treated for esophageal or gastroesophageal junction cancer. PATIENTS AND METHODS: A European multicenter cohort study from five high-volume esophageal cancer centers including patients treated between 2010 and 2017 was conducted. The effect of cardiorespiratory comorbidity and respiratory function upon postoperative outcomes was assessed. RESULTS: In total 1590 patients from five centers were included; 274 (17.2%) had respiratory comorbidity, and 468 (29.4%) had cardiac comorbidity. Respiratory comorbidity was associated with increased risk of overall postoperative complications, anastomotic leak, pulmonary complications, pneumonia, increased Clavien-Dindo score, and critical care and hospital length of stay. After neoadjuvant chemoradiotherapy, respiratory comorbidity was associated with increased risk of anastomotic leak [odds ratio (OR) 1.83, 95% confidence interval (CI) 1.11-3.04], pneumonia (OR 1.65, 95% CI 1.10-2.47), and any pulmonary complication (OR 1.52, 95% CI 1.04-2.22), an effect which was not observed following neoadjuvant chemotherapy or surgery alone. Cardiac comorbidity was associated with increased risk of cardiovascular and pulmonary complications, respiratory failure, and Clavien-Dindo scoreββ₯βIIIa. Among all patients, forced expiratory volume in 1Β s (FEV1)/forced vital capacity (FVC) ratioβ>β70% was associated with reduced risk of overall postoperative complications, cardiovascular complications, atrial fibrillation, pulmonary complications, and pneumonia. CONCLUSIONS: The results of this study suggest that cardiorespiratory comorbidity and impaired pulmonary function are associated with increased risk of postoperative complications after esophagectomy performed in high-volume European centers. Given the observed interaction with neoadjuvant approach, these data indicate a potentially modifiable index of perioperative risk
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone
Recommended standardized procedures for determining exhaled lower respiratory
nitric oxide and nasal nitric oxide have been developed by task forces of the
European Respiratory Society and the American Thoracic Society. These
recommendations have paved the way for the measurement of nitric oxide to
become a diagnostic tool for specific clinical applications. It would be
desirable to develop similar guidelines for the sampling of other trace gases
in exhaled breath, especially volatile organic compounds (VOCs) which reflect
ongoing metabolism. The concentrations of water-soluble, blood-borne substances
in exhaled breath are influenced by: (i) breathing patterns affecting gas
exchange in the conducting airways; (ii) the concentrations in the
tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations
of the compound. The classical Farhi equation takes only the alveolar
concentrations into account. Real-time measurements of acetone in end-tidal
breath under an ergometer challenge show characteristics which cannot be
explained within the Farhi setting. Here we develop a compartment model that
reliably captures these profiles and is capable of relating breath to the
systemic concentrations of acetone. By comparison with experimental data it is
inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be
attributed to airway gas exchange, with minimal changes of the underlying blood
and tissue concentrations. Moreover, it is deduced that measured end-tidal
breath concentrations of acetone determined during resting conditions and free
breathing will be rather poor indicators for endogenous levels. Particularly,
the current formulation includes the classical Farhi and the Scheid series
inhomogeneity model as special limiting cases.Comment: 38 page
Neurotized Free Muscle Flaps can Produce MRI Changes Mimicking Tumour Recurrence
Soft tissue sarcomas are investigated by magnetic resonance imaging (MRI) both for initial staging and follow-up. We
describe the presence of increased signal on T2-weighted images caused by a neurotized muscle flap following reconstructive
surgery. This raised concern about possible sarcoma recurrence that was not clinically evident. On post-operative imaging
of sarcomas the presence of recurrent tumour is indicated by a mass and high signal intensity on T2-weighted images.
However, high signal changes in skeletal muscle on T2-weighted images are not specific. In this case, the free functioning
muscle transfer with neurotization of the flap mimicked recurrence on MR scan. High signal intensity on T2-weighted
images in muscle is an indication of either a physiological change or a pathological condition and must be taken in
context of the clinical picture
Quantifying the Spatial Dimension of Dengue Virus Epidemic Spread within a Tropical Urban Environment
Global trends in population growth and human redistribution and movement have reshaped the map of dengue transmission risk, exposing a significant proportion of the world's population to the threat of dengue epidemics. Knowledge on the relative contribution of vector and human movement to the widespread and explosive nature of dengue epidemic spread within an urban environment is limited. By analyzing a very detailed dataset of a dengue epidemic that affected the Australian city of Cairns we performed a comprehensive quantification of the spatio-temporal dimensions of dengue virus epidemic transmission and propagation within a complex urban environment. Space and space-time analysis and models allowed derivation of detailed information on the pattern of introduction and epidemic spread of dengue infection within the urban space. We foresee that some of the results and recommendations derived from our study may also be applicable to many other areas currently affected or potentially subject to dengue epidemics
Do clinical guidelines reduce clinician dependent costs?
Clinician dependent costs are the costs of care that are under the discretion of the healthcare provider. These costs include the costs of drugs, tests and investigations, and discretionary outpatient visits and impatient stays. The purpose of this review was to summarize recent evidence, relevant to both developed and developing countries on whether evidence based clinical guidelines can change hospitals variable costs which are clinician dependent, and the degree of financial savings achieved at hospital level. Potential studies for inclusion were identified using structured searches of Econlit, J-Stor, and Pubmed databases. Two reviewers independently evaluated retrieved studies for inclusion. The methodological quality of the selected articles was assessed using the Oxford Centre for Evidence- Based Medicine (CEBM) levels of evidence. The results suggest that 10 of the 11 interventions were successful reducing financial costs. Most of the interventions, either in modeling studies or real interventions generate significant financial saving, although the former reported higher savings because the studies assumed 100 percent compliance
- β¦