32 research outputs found

    Characterization of Side Populations in HNSCC: Highly Invasive, Chemoresistant and Abnormal Wnt Signaling

    Get PDF
    Side Population (SP) cells, a subset of Hoechst-low cells, are enriched with stem cells. Originally, SP cells were isolated from bone marrow but recently have been found in various solid tumors and cancer cell lines that are clonogenic in vitro and tumorigenic in vivo. In this study, SP cells from lymph node metastatic head and neck squamous cell carcinoma (HNSCC) cell lines were examined using flow cytometry and Hoechst 3342 efflux assay. We found that highly metastatic HNSCC cell lines M3a2 and M4e contained more SP cells compared to the low metastatic parental HNSCC cell line 686LN. SP cells in HNSCC were highly invasive in vitro and tumorigenic in vivo compared to non-SP cells. Furthermore, SP cells highly expressed ABCG2 and were chemoresistant to Bortezomib and etoposide. Importantly, we found that SP cells in HNSCC had abnormal activation of Wnt/β-catenin signaling as compared to non-SP cells. Together, these findings indicate that SP cells might be a major driving force of head and neck tumor formation and metastasis. The Wnt/β-catenin signaling pathway may be an important target for eliminating cancer stem cells in HNSCC

    Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil.

    No full text
    The efficacies of specific Bothrops atrox-Lachesis and standard Bothrops-Lachesis antivenoms were compared in the north eastern Amazon region of Brazil. The main aim was to investigate whether a specific antivenom raised against the venom of B. atrox, the most important Amazon snake species from a medical point of view, was necessary for the treatment of patients in this region. Seventy-four patients with local and systemic effects of envenoming by Bothrops or Lachesis snakes were randomly allocated to receive either specific (n = 38) or standard (n = 36) antivenoms. In 46 cases (24 in the standard antivenom group, 22 in the other) the snake was identified either by enzyme immunoassay or by examination of the dead snake, as B. atrox in 45, L. muta in one. Patients were similar in all clinical and epidemiological respects before treatment. Results indicated that both antivenoms were equally effective in reversing all signs of envenoming detected both clinically and in the laboratory. Venom-induced haemostatic abnormalities were resolved within 24 h after the start of antivenom therapy in most patients. The extent of local complications, such as local skin necrosis and secondary infection, was similar in both groups. There were no deaths. The incidence of early anaphylactic reactions was 18% and 19%, respectively for specific and standard antivenoms; none was life-threatening. Measurement of serum venom concentrations by enzyme immunoassay (EIA) confirmed that both antivenoms cleared venom antigenaemia effectively. EIA also revealed that one patient had been bitten by Lachesis muta, although the clinical features in this case were not distinctive
    corecore