12 research outputs found

    Incorporating tumour pathology information into breast cancer risk prediction algorithms.

    Get PDF
    INTRODUCTION: Mutations in BRCA1 and BRCA2 confer high risks of breast cancer and ovarian cancer. The risk prediction algorithm BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) may be used to compute the probabilities of carrying mutations in BRCA1 and BRCA2 and help to target mutation screening. Tumours from BRCA1 and BRCA2 mutation carriers display distinctive pathological features that could be used to better discriminate between BRCA1 mutation carriers, BRCA2 mutation carriers and noncarriers. In particular, oestrogen receptor (ER)-negative status, triple-negative (TN) status, and expression of basal markers are predictive of BRCA1 mutation carrier status. METHODS: We extended BOADICEA by treating breast cancer subtypes as distinct disease end points. Age-specific expression of phenotypic markers in a series of tumours from 182 BRCA1 mutation carriers, 62 BRCA2 mutation carriers and 109 controls from the Breast Cancer Linkage Consortium, and over 300,000 tumours from the general population obtained from the Surveillance Epidemiology, and End Results database, were used to calculate age-specific and genotype-specific incidences of each disease end point. The probability that an individual carries a BRCA1 or BRCA2 mutation given their family history and tumour marker status of family members was computed in sample pedigrees. RESULTS: The cumulative risk of ER-negative breast cancer by age 70 for BRCA1 mutation carriers was estimated to be 55% and the risk of ER-positive disease was 18%. The corresponding risks for BRCA2 mutation carriers were 21% and 44% for ER-negative and ER-positive disease, respectively. The predicted BRCA1 carrier probabilities among ER-positive breast cancer cases were less than 1% at all ages. For women diagnosed with breast cancer below age 50 years, these probabilities rose to more than 5% in ER-negative breast cancer, 7% in TN disease and 24% in TN breast cancer expressing both CK5/6 and CK14 cytokeratins. Large differences in mutation probabilities were observed by combining ER status and other informative markers with family history. CONCLUSIONS: This approach combines both full pedigree and tumour subtype data to predict BRCA1/2 carrier probabilities. Prediction of BRCA1/2 carrier status, and hence selection of women for mutation screening, may be substantially improved by combining tumour pathology with family history of cancer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors

    Get PDF
    Introduction The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. Methods To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Results Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Conclusions Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.National Cancer Institute (U.S.). Integrative Cancer Biology Program (grant U54 CA112967)Virginia and D.K. Ludwig Fund for Cancer Researc

    Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study

    Get PDF
    The aim of this study was to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of bortezomib plus docetaxel in patients with anthracycline-pretreated advanced/metastatic breast cancer. Forty-eight patients received up to eight 21-day cycles of docetaxel (60–100 mg m−2 on day 1) plus bortezomib (1.0–1.5 mg m−2 on days 1, 4, 8, and 11). Pharmacodynamic and pharmacokinetic analyses were performed in a subset of patients. Five patients experienced DLTs: grade 3 bone pain (n=1) and febrile neutropenia (n=4). The MTD was bortezomib 1.5 mg m−2 plus docetaxel 75 mg m−2. All 48 patients were assessable for safety and efficacy. The most common adverse events were diarrhoea, nausea, alopecia, asthenia, and vomiting. The most common grade 3/4 toxicities were neutropenia (44%), and febrile neutropenia and diarrhoea (each 19%). Overall patient response rate was 29%. Median time to progression was 5.4 months. In patients with confirmed response, median time to response was 1.3 months and median duration of response was 3.2 months. At the MTD, response rate was 38%. Pharmacokinetic characteristics of bortezomib/docetaxel were comparable with single-agent data. Addition of docetaxel appeared not to affect bortezomib inhibition of 20S proteasome activity. Mean alpha-1 acid glycoprotein concentrations increased from baseline at nearly all time points across different bortezomib dose levels. Bortezomib plus docetaxel is an active combination for anthracycline-pretreated advanced/metastatic breast cancer. The safety profile is manageable and consistent with the side effects of the individual agents

    Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer

    No full text
    Contains fulltext : 108124.pdf (publisher's version ) (Closed access)Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic and 39 familial breast cancer cases. The two groups were matched for hormone receptor status and human epidermal growth factor receptor 2 status. Additionally, they were matched by grading with a maximum difference of +/-1 degree (e.g., G2 instead of G3). Cytoplasmic PARP (cPARP) expression was significantly higher in familial compared to sporadic breast cancer (P = 0.008, chi-squared test for trends) and a high nuclear PARP expression (nPARP) was significantly more frequently observed in familial breast cancer (64 %) compared with sporadic breast cancer (36 %) (P = 0.005, chi-squared test). The overall PARP expression was significantly higher in familial breast cancer (P = 0.042, chi-squared test). In familial breast cancer, a combination of high cPARP and high nPARP expression is the most common (33 %), whereas in sporadic breast cancer, a combination of low cPARP and intermediate nPARP expression is the most common (39 %). Our results show that the overall PARP expression in familial breast cancer is higher than in sporadic breast cancer which might suggest they might respond better to treatment with PARP inhibitors
    corecore