54 research outputs found

    Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome

    Get PDF
    Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans. It is typified by highly variable symptoms, which might be explained by epigenetic regulation of genes in the interval. Using computational algorithms, our laboratory previously predicted that DiGeorge critical region 6 (DGCR6), which lies within the deletion interval, is imprinted in humans. Expression and epigenetic regulation of this gene have not, however, been examined in 22q11DS subjects. The purpose of this study was to determine if the expression levels of DGCR6 and its duplicate copy DGCR6L in 22q11DS subjects are associated with the parent-of-origin of the deletion and childhood psychopathologies. Our investigation showed no evidence of parent-of-origin-related differences in expression of both DGCR6 and DGCR6L. However, we found that the variability in DGCR6 expression was significantly greater in 22q11DS children than in age and gender-matched control individuals. Children with 22q11DS who had anxiety disorders had significantly lower DGCR6 expression, especially in subjects with the deletion on the maternal chromosome, despite the lack of imprinting. Our findings indicate that epigenetic mechanisms other than imprinting contribute to the dysregulation of these genes and the associated childhood psychopathologies observed in individuals with 22q11DS. Further studies are now needed to test the usefulness of DGCR6 and DGCR6L expression and alterations in the epigenome at these loci in predicting childhood anxiety and associated adult-onset pathologies in 22q11DS subjects

    Clonal Evolution through Loss of Chromosomes and Subsequent Polyploidization in Chondrosarcoma

    Get PDF
    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events

    The Human Retinoblastoma Gene Is Imprinted

    Get PDF
    Genomic imprinting is an epigenetic process leading to parent-of-origin–specific DNA methylation and gene expression. To date, ∼60 imprinted human genes are known. Based on genome-wide methylation analysis of a patient with multiple imprinting defects, we have identified a differentially methylated CpG island in intron 2 of the retinoblastoma (RB1) gene on chromosome 13. The CpG island is part of a 5β€²-truncated, processed pseudogene derived from the KIAA0649 gene on chromosome 9 and corresponds to two small CpG islands in the open reading frame of the ancestral gene. It is methylated on the maternal chromosome 13 and acts as a weak promoter for an alternative RB1 transcript on the paternal chromosome 13. In four other KIAA0649 pseudogene copies, which are located on chromosome 22, the two CpG islands have deteriorated and the CpG dinucleotides are fully methylated. By analysing allelic RB1 transcript levels in blood cells, as well as in hypermethylated and 5-aza-2β€²-deoxycytidine–treated lymphoblastoid cells, we have found that differential methylation of the CpG island skews RB1 gene expression in favor of the maternal allele. Thus, RB1 is imprinted in the same direction as CDKN1C, which operates upstream of RB1. The imprinting of two components of the same pathway indicates that there has been strong evolutionary selection for maternal inhibition of cell proliferation

    Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain

    Get PDF
    Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting

    Variants of ST8SIA1 Are Associated with Risk of Developing Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios ( affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with pβ€Š=β€Š0.001, pβ€Š=β€Š0.01 and pβ€Š=β€Š0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS

    Maternal cadmium, iron and zinc levels, DNA methylation and birth weight

    Get PDF
    Background Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationships remain limited. Methods We examined whether maternal Cd levels during early pregnancy were associated with offspring DNA methylation at regulatory sequences of genomically imprinted genes and weight at birth, and whether Fe and Zn altered these associations. Cd, Fe and Zn were measured in maternal blood of 319 women Ò‰€12 weeks gestation. Offspring umbilical cord blood leukocyte DNA methylation at regulatory differentially methylated regions (DMRs) of 8 imprinted genes was measured using bisulfite pyrosequencing. Regression models were used to examine the relationships among Cd, Fe, Zn, and DMR methylation and birth weight. Results Elevated maternal blood Cd levels were associated with lower birth weight (pÒ€‰=Ò€‰0.03). Higher maternal blood Cd levels were also associated with lower offspring methylation at the PEG3 DMR in females (ΓŽΒ²Γ’β‚¬β€°=Ò€‰0.55, seÒ€‰=Ò€‰0.17, pÒ€‰=Ò€‰0.05), and at the MEG3 DMR in males (ΓŽΒ²Γ’β‚¬β€°=Ò€‰0.72, seÒ€‰=Ò€‰0.3, pÒ€‰=Ò€‰0.08), however the latter association was not statistically significant. Associations between Cd and PEG3 and PLAGL1 DNA methylation were stronger in infants born to women with low concentrations of Fe (pÒ€‰<Ò€‰0.05). Conclusions Our data suggest the association between pre-natal Cd and offspring DNA methylation at regulatory sequences of imprinted genes may be sex- and gene-specific. Essential metals such as Zn may mitigate DNA methylation response to Cd exposure. Larger studies are required

    Genome-Wide Analysis Reveals a Complex Pattern of Genomic Imprinting in Mice

    Get PDF
    Parent-of-origin–dependent gene expression resulting from genomic imprinting plays an important role in modulating complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting, resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL) affecting body weight and growth in mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes. Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current views, may often be stronger at later stages in life

    Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    Get PDF
    Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults

    Integrative DNA Methylation and Gene Expression Analyses Identify DNA Packaging and Epigenetic Regulatory Genes Associated with Low Motility Sperm

    Get PDF
    In previous studies using candidate gene approaches, low sperm count (oligospermia) has been associated with altered sperm mRNA content and DNA methylation in both imprinted and non-imprinted genes. We performed a genome-wide analysis of sperm DNA methylation and mRNA content to test for associations with sperm function. (NCBI 1788). There was a trend among altered expression of these epigenetic regulatory genes and RPMM DNA methylation class.Using integrative genome-wide approaches we identified CpG methylation profiles and mRNA alterations associated with low sperm motility
    • …
    corecore