505 research outputs found

    Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films

    Full text link
    The ideal intrinsic barriers to domain switching in c-phase PbTiO_3 (PTO), PbZrO_3 (PZO), and PbZr_{1-x}Ti_xO_3 (PZT) are investigated via first-principles computational methods. The effects of epitaxial strain on the atomic structure, ferroelectric response, barrier to coherent domain reversal, domain-wall energy, and barrier to domain-wall translation are studied. It is found that PTO has a larger polarization, but smaller energy barrier to domain reversal, than PZO. Consequentially the idealized coercive field is over two times smaller in PTO than PZO. The Ti--O bond length is more sensitive to strain than the other bonds in the crystals. This results in the polarization and domain-wall energy in PTO having greater sensitivity to strain than in PZO. Two ordered phases of PZT are considered, the rock-salt structure and a (100) PTO/PZO superlattice. In these simple structures we find that the ferroelectric properties do not obey Vergard's law, but instead can be approximated as an average over individual 5-atom unit cells.Comment: 9 pages, 13 figure
    • …
    corecore