129 research outputs found
Fluctuations in Ammonia Oxidizing Communities Across Agricultural Soils are Driven by Soil Structure and pH
The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators) of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR) of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively), and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 μgN h−1 gdw−1 and 1.68 ± 0.11 μgN h−1 gdw−1, being higher in soils with higher clay content (1.09 ± 0.12 μgN h−1 gdw−1) and lower in soils with lower clay percentages (0.27 ± 0.04 μgN h−1 gdw−1). Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10%) the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%). Similar trends were observed for the sizes of these communities. The present work represents a first step toward defining a NOR for soil nitrification. The sensitivity of the process and organisms to impacts from the milieu support their use as proxies in the NOR of agricultural soils. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil type-specific manner
Development of a reliable extraction method for the recovery of total genomic DNA from woodchip colonizing biofilm involved in gas biofiltration
[Abstract] This preliminary study focused on a critical step for the characterization of microbial ecosystem involved in biofiltration. Two aspects of nucleic acid recovery were explored: (i) cell dispersion (three methods tested) and (ii) total DNA extraction (four methods tested). The objective is to select the optimal combination of desorption/extraction methods, allowing subsequent molecular investigations to be reliable. Three relevant criteria are used to assess extraction efficiency: DNA amount and purity, and subsequent amplification feasibility
Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities
The roles of species richness, resource use, and resource availability are central to many hypotheses explaining the diversity-invasion phenomenon but are generally not investigated together. Here, we created a large diversity gradient of soil microbial communities by either assembling communities of pure bacterial strains or removing the diversity of a natural soil. Using data on the resource-use capacities of the soil communities and an invader that were gathered from 71 carbon sources, we quantified the niches available to both constituents by using the metrics community niche and remaining niche available to the invader. A strong positive relationship between species richness and community niche across both experiments indicated the presence of resource complementarity. Moreover, community niche and the remaining niche available to the invader predicted invader abundance well. This suggested that increased competition in communities of higher diversity limits community invasibility and underscored the importance of resource availability as a key mechanism through which diversity hinders invasions. As a proof of principle, we subjected selected invaded communities to a resource pulse, which progressively uncoupled the link between soil microbial diversity and invasion and allowed the invader to rebound after nearly being eliminated in some communities. Our results thus show that (1) resource competition suppresses invasion, (2) biodiversity increases resource competition and decreases invasion through niche preemption, and (3) resource pulses that cannot be fully used, even by diverse communities, are favorable to invasion
Responses of soil nitrite-oxidizers to global environmental changes
Background/Question/Methods
There is increasing evidence that global change can alter the structure of plant
communities with large impacts on the functioning of terrestrial ecosystems. However, little is known about the impact of global change on soil microbial communities. In particular, the response of soil nitrite-oxidizers microorganisms that mediate the second step of nitrification, a key process of the nitrogen cycle, has never been investigated.
Here, we examined the effects of four main global environmental changes on the activity, the abundance and the diversity of soil nitrite-oxidizers in an annual grassland ecosystem as part of the Jasper Ridge Global Change Experiment (CA, USA). This experiment includes four treatments - CO2, temperature, precipitation and nitrogen - with two levels per treatment (ambient and elevated, with elevated treatment based on prediction for the end of the century), and all of their factorial combinations. We measured potential nitrite oxidation, the abundance of soil Nitrobacter- and Nitrospiralike nitrite-oxidizers (using quantitative PCR targeting nxrA and 16S rRNA gene, respectively) and the diversity of soil Nitrobacter-like nitrite-oxidizers (using cloning sequencing targeting the nxrA gene) in each treatment combination at the end of the 7th and 8th growing seasons under treatments. Furthermore, we analyzed to what extent changes in the activity of the soil nitrite-oxidizers result from changes in their abundance or diversity.

Results/Conclusions
Simulated global environmental changes significantly altered the activity, as well as the abundance and the diversity of soil nitrite-oxidizers. Potential nitrite oxidation decreased with increased precipitation and increased with elevated CO2 when combined with added nitrogen or precipitation. The abundance of soil Nitrobacter-like nitrite-oxidizers also decreased with increased precipitation and increased with elevated levels of CO2 and nitrogen. In contrast, the abundance of soil Nitrospira-like nitrite-oxidizers increased with enhanced precipitation and decreased with elevated levels of CO2 and temperature. Finally, the structure of the soil Nitrobacter-like nitrite-oxidizers was significantly altered by the treatments. Consistent with results reported by Attard et al. (2010) for agroecosystems, we found that changes in potential rates of nitrite oxidation in response to treatments were partly explained by changes in the abundance of soil Nitrobacter-like nitrite-oxidizers, but not by changes in the abundance of soil Nitrospiralike nitrite-oxidizers, suggesting that Nitrobacter-like nitrite-oxidizers were the main functional players of the soil nitrite-oxidizing microbial community.
Our study provides evidence that global change could alter the abundance and diversity of soil nitrite-oxidizers, with potential impacts for soil nitrogen cycling.

*The audio track for talks in this symposium may be obtained at the following web address:*

*https://sites.google.com/site/esa2010symposium13audiocontent/esa2010-symposium13-audio-content
Light interception principally drives the understory response to boxelder invasion in riparian forests
Since several decades, American boxelder (Acer negundo) is replacing white willow (Salix alba) riparian forests along southern European rivers. This study aims to evaluate the consequences of boxelder invasion on understory community in riparian areas. We determined the understory species richness, composition and biomass in boxelder and white willow stands located in three riparian forests, representative of three rivers with distinct hydrological regimes. We investigated correlation of these variables to soil moisture and particle size, main soil nutrient stocks, potential nitrification and denitrification, tree canopy cover and photosynthetic active radiation (PAR) at the ground level. A greenhouse experiment was then conducted to identify the causal factors responsible for changes in the understory. The effect of soil type, PAR level and water level on the growth and the biomass production of Urtica dioica were examined. A lower plant species richness and biomass, and a modification of community composition were observed for boxelder understory in all sites, regardless of their environmental characteristics. The strongest modification that follows boxelder invasion was the decline in U. dioica, the dominant species of the white willow forest understory. These differences were mainly correlated with a lower incident PAR under boxelder canopy. The greenhouse experiment identified PAR level as the main factor responsible for the changes in U. dioica stem number and biomass. Our results indicate that adult boxelder acts as an ecosystem engineer that decreases light availability. The opportunistic invasion by boxelder leads to important understory changes, which could alter riparian ecosystem functioning
A comparison of the strength of biodiversity effects across multiple functions
In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combinatio
Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning
Genetic diversity of phylogenetic or functional markers is widely used as a proxy of microbial diversity. However, it remains unclear to what extent functional diversity (FD), gene sequence diversity and community functioning are linked. For a range of denitrifying bacteria, we analyzed the relationships between (i) the similarity of functional traits evaluated from metabolic profiles (BIOLOG plates) or from N2O accumulation patterns on different carbon sources and (ii) the similarity of phylogenetic (16S rRNA gene) or functional (nir gene) markers. We also calculated different proxies for the diversity of denitrifier community based on taxa richness, phylogenetic (16S rRNA gene) or functional similarities (based either on metabolic profiles or N2O accumulation patterns), and evaluated their performance in inferring the functioning of assembled denitrifying communities. For individual strains, the variation in the 16S rRNA gene sequence was weakly correlated with the variation in metabolic patterns (ρ = 0.35) and was not related to N2O accumulation. The latter was correlated with the similarity of nitrite reductase residues. When nir genes were analyzed separately, the similarity in amino acids coded by the nirS genes was highly correlated with the observed patterns of N2O accumulation (ρ = 0.62), whereas nirK amino acid residues were unrelated to N2O accumulation. For bacterial assemblages, phylogenetic diversity (average similarity among species in a community) and mean community dissimilarity (average distance between species) calculated using 16S rRNA gene sequences, and FD measures associated with metabolic profiles, poorly predicted the variation in the functioning of assembled communities (≤ 15%). In contrast, the proxies of FD based on N2O accumulation patterns performed better and explained from 23 to 42% of the variation in denitrification. Amongst those, community niche was the best metric, indicating the importance of complementanty for resources in the context of bacterial community functioning
First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA
Nitrite oxidoreductase (NXR) is the key enzyme responsible for the oxidation of NO2 to NO3 in nitrite-oxidizing bacteria. For the first time a molecular approach for targeting the nxrA gene was developed, encoding the catalytic subunit of the NXR, to study diversity of Nitrobacter-like organisms based on the phylogeny of nxrA gene sequences in soils. NxrA sequences of the Nitrobacter strains analysed (Nitrobacter hamburgensis, Nitrobacter vulgaris, Nitrobacter winogradskyi, Nitrobacter alkalicus) by PCR, cloning and sequencing revealed the occurrence of multiple copies of nxrA genes in these strains. The copy number and similarity varied among strains. The diversity of Nitrobacter-like nxrA sequences was explored in three soils (a French permanent pasture soil, a French fallow soil, and an African savannah soil) using a cloning and sequencing approach. Most nxrA sequences found in these soils (84%) differed from nxrA sequences obtained from Nitrobacter strains. Moreover, the phylogenetic distribution and richness of nxrAlike sequences was extremely variable depending on soil type. This nxrA tool extends the panel of functional genes available for studying bacteria involved in the nitrogen cycle
Control of soil N cycle processes by Pteridium aquilinum and Erica cinerea in heathlands along a pH gradient
Nitrate is a limiting resource in heathland acid soils. Nitrate levels increase in heathland soils after Pteridium aquilinum invasions, and this species is assumed to biologically control nitrogen cycle processes, thus increasing nitrate availability. We compared how P. aquilinum (bracken) and Erica cinerea (bell heather) modify processes driving nitrate availability along a soil pH gradient in a Natura 2000 reserve facing bracken invasion. Soil nitrate and ammonium concentrations, substrate-induced respiration (SIR), denitrification and nitrification enzyme activities (DEA and NEA, respectively), root procyanidin concentrations, and denitrification inhibition by procyanidins were measured on five sites under P. aquilinum and E. cinerea stands. NEA and nitrate levels were higher, and ammonium levels and SIR lower, for P. aquilinum in the most acid soils. Procyanidins from both species induced the same level of denitrification inhibition, soil nitrate being correlated with root procyanidin concentration for both species. Soil nitrate correlated with NEA only for P. aquilinum. Our results show that both species increased procyanidin production in the most acid soils, thereby reducing denitrification and decreasing nitrate loss, this process being more efficient for E. cinerea. However, P. aquilinum additionally increased nitrification, and this double control on nitrification and denitrification was very efficient to increase soil nitrate availability in the most acid soils. This may participate to the success of P. aquilinum invasions in heathlands. This shows that approaches for bracken control in heathlands should better account for belowground processes and, more generally, that biological denitrification inhibition by plants may be a widespread phenomenon influencing soil N dynamics in N-poor environments
Community niche predicts the functioning of denitrifying bacterial assemblages
International audiencePredicting biodiversity effects on ecosystem functioning requires adequate evaluation of the mechanisms explaining why more diverse systems could perform better than less diverse ones. In this context, tackling functional diversity has become an important issue. Even though the aggregation of species into functional groups supposes niche differences among groups, the concept of niche has not been fully exploited in the context of the biodiversity–ecosystem functioning research. Here we report the results of microcosm experiments where we used bacteria as a model to explore whether niche differences among species provide a good estimation of community functioning. For that we used experimental communities of denitrifying bacterial species and investigated the effects of bacterial diversity on two community processes, denitrification and anaerobic CO2-production. We first measured the activities of 16 bacterial species grown individually on six different carbon sources. We then used the same set of species to assemble communities varying in both species richness and composition in microcosms containing a mixture of all six carbon sources. The performances of individual species on individual carbon sources were used to calculate, for each process measured, an a priori index called ‘‘community niche'' that accounted for the performances of the species present in a given community across the entire range of the six resources. We found that species richness had a positive but small effect on both community processes whereas community niche explained a much larger proportion of the variation. According to the results of a path analysis, community niche was the main driver for the corresponding community process, but species richness affected community niche and thus had an indirect effect on denitrification and CO2 production. In addition to community niche, the presence of particular bacterial species also influenced community functioning, indicating that other effects than the capacity to use carbon sources played a, albeit minor, role in our experiment. Our study provides evidence for the importance of resource niches in shaping biodiversity–ecosystem functioning relationships of bacterial communities
- …