14 research outputs found

    Effect of inositol hexakisphosphate on the spectroscopic properties of the nitric oxide derivative of ferrous horse and bovine hemoglobin

    No full text
    The effect of inositol hexakisphosphate (IHP) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous horse and bovine hemoglobin (Hb) has been investigated. In the absence of IHP, the nitric oxide derivative of ferrous horse Hb shows spectroscopic properties similar to those of the corresponding derivative of ferrous human Hb that are generally taken as typical of the high affinity state of tetrametric hemoproteins. Similar to human Hb, the addition of IHP to the nitric oxide derivative of ferrous horse Hb induces a transition toward a species characterized by spectral properties typical of the low affinity state of hemoglobins. Nevertheless, the equilibrium constant for IHP binding to the nitric oxide derivative of ferrous horse Hb (= 1.5 x 10(2) M-1) is much lower than that reported for the association of the polyphosphate to the same derivative of ferrous human Hb (greater than 3 x 10(5) M-1). Conversely, the spectroscopic properties of the nitric oxide derivative of ferrous bovine Hb are characteristic of the low affinity state of tetrameric hemoproteins, both in the absence and in the presence of IHP. These results, taken together with the behavior of the nitric oxide derivative of ferrous human Hb, provide further evidence for the peculiar oxygen binding properties of horse and bovine Hb

    Anion size modulates the structure of the a state of cytochrome c

    No full text
    Several studies have shown that anions induce collapse of acid-denatured cytochrome c into the compact A state having the properties of the molten globule and that the anion charge is the main determinant for the A state stabilization. The results here reported show that the anion size plays a role in determining the overall structure of the A state. In particular, small anions induce formation of an A state in which the native Met80-Fe(III) axial bond is recovered and the nativelike redox properties restored. On the other hand, the A state stabilized by large anions shows a hisfidine (His26 or His33) as the sixth ligand of the heme-iron, a very weak interaction between Trp59 and the heme propionate, and lacks nativelike redox properties. The two anion-stabilized states show similar stability, indicating that (i) the hydrophobic core (which is equally stabilized by all the anions investigated, independently of their size) is the region that mainly contributes to the macromolecule stabilization, and (ii) the flexible loops are responsible for the spectroscopic (and, thus, structural) and redox differences observed

    Cooperative Mechanism in the Homodimeric Myoglobin from Nassa mutabilis†

    No full text
    Oxygen binding and spectroscopic properties of the homodimeric myoglobin (Mb) from the prosobranchia sea snail Nassa mutabilis have been investigated. Oxygen equilibrium curves are pH-independent and cooperative with P50 = 5 +/- 1 mmHg and n approximately 1.5. Circular dichroism spectra of the oxygenated and deoxygenated form of N. mutabilis Mb are superimposable between 190 and 250 nm, suggesting a mechanism for cooperative ligand binding that does not involve changes in the alpha-helical content of the whole protein. The oxygen dissociation process is biphasic and pH-dependent, with different pKa values (=6.7 +/- 0.2 and 8.5 +/- 0.3) for the two phases. Moreover, the activation energy is essentially the same for both oxygen dissociation processes (Ea = 56.4 +/- 2.1 kJ/mol for the fast phase, and Ea = 53.8 +/- 1.9 kJ/mol for the slow phase), indicating that the rate difference for O2 dissociation between the diliganded and the monoliganded species is mostly dependent on a variation of the activation entropy. Ferrous nitrosylated N. mutabilis Mb shows, at alkaline and neutral pH, axial and rhombic X-band EPR signals, respectively, which display below pH 6 a three-hyperfine pattern typical of five-coordination. The results presented here suggest that in N.mutabilis Mb the kinetic control of cooperativity operates through a mechanism never observed before in other hemoproteins, which requires a ligand-linked large enhancement for the value of the oxygen association process in a molecule not undergoing changes in quaternary structure

    Impaired copper binding by the H46R mutant of human Cu,Zn superoxide dismutase, involved in amyotrophic lateral sclerosis

    No full text
    Several point mutations in the gene coding for human Cu,Zn superoxide dismutase have been reported as being responsible for familial amyotrophic lateral sclerosis (FALS). However, no direct demonstration has been provided for a correlation between total superoxide dismutase activity and severity of the FALS pathology. In order to get a better insight into the mechanism(s) underlying the FALS phenotype, we have investigated the activity and the copper binding properties of the single mutant H46R, which is associated with a Japanese form of FALS. We have shown that this mutant is structurally stable but lacks significant enzyme activity and has impaired capability of binding catalytic copper. The mutant protein can be fully reconstituted with copper in vitro but its ESR spectrum displays an axial shape quite different from that of the wild-type
    corecore