16 research outputs found

    A Dual Five-Level Inverter-Fed Induction Motor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor Voltage Balancing Using Only the Switching-State Redundancy—Part I

    No full text
    For a dual five-level inverter-fed induction motor (IM) drive, effects of dc-neutral currents on dc-link capacitor voltage fluctuations are analyzed in this paper. Operating limitations in achieving the dual task of common-mode voltage elimination and dc-link capacitor voltage balancing with a single dc power supply are further investigated for the proposed drive. In this paper, an open-loop control scheme, which uses only the availability of redundant switching states for the inverter control, is presented. Limitation of proposed open-loop control to take corrective action for any existing unbalance in capacitor voltages calls for a closed-loop control scheme, which is presented in Part II of this paper

    Novel Current Error Space Phasor Based Hysteresis Controller Using Parabolic Bands for Control of Switching Frequency Variations

    No full text
    A current error space phasor based simple hysteresis controller is proposed in this paper to control the switching frequency variation in two-level pulsewidth-modulation (PWM) inverter-fed induction motor (IM) drives. A parabolic boundary for the current error space phasor is suggested for the first time to obtain the switching frequency spectrum for output voltage with hysteresis controller similar to the constant switching frequency voltage-controlled space vector PWM-based IM drive. A novel concept of online variation of this parabolic boundary, which depends on the operating speed of motor, is presented. A generalized technique that determines the set of unique parabolic boundaries for a two-level inverter feeding any given induction motor is described. The sector change logic is self-adaptive and is capable of taking the drive up to the six-stepmode if needed. Steady-state and transient performance of proposed controller is experimentally verified on a 3.7-kW IM drive in the entire speed range. Close resemblance of the simulation and experimental results is shown

    Five-level inverter scheme for an induction motor drive with simultaneous elimination of commonmode voltage and DC-link capacitor voltage imbalance

    No full text
    The simultaneous elimination of common-mode voltage and DC-link capacitor voltage imbalance is achieved in a five-level inverter scheme for an induction motor drive throughout its operating range. A dual five-level inverter-fed open-end-winding induction motor structure is used for the proposed drive. Initially, the operating limitations of achieving this dual task for the five-level inverter configuration are investigated for a single DC power supply. Subsequently, a switching strategy for a five-level inverter topology with two DC power supplies is proposed to achieve the dual task over the entire speed range of the drive. The proposed drive offers a simple power-bus structure with more redundant switching combinations for inverter voltage vectors, and requires a lower voltage-blocking capacity of the power devices as compared with the conventional single five-level inverter-fed drive. As only the availability of redundant switching combinations for inverter voltage vectors is exploited, the dual task is achieved without disturbing the fundamental component of the inverter output voltage and the scheme does not need any extra control circuit hardware. Experimental verification of the proposed scheme is done on a 1.5 kW induction motor drive in the linear as well as overmodulation range

    An improved sapce phasor based current hysteresis controller with reduced switching frequency variations using variable parabolic bands

    No full text
    A current error space phasor based simple hysteresis controller is proposed in this paper to control the switching frequency variation in two-level pulsewidth-modulation (PWM) inverter-fed induction motor (IM) drives. A parabolic boundary for the current error space phasor is suggested for the first time to obtain the switching frequency spectrum for output voltage with hysteresis controller similar to the constant switching frequency voltage-controlled space vector PWM-based IM drive. A novel concept of online variation of this parabolic boundary, which depends on the operating speed of motor, is presented. A generalized technique that determines the set of unique parabolic boundaries for a two-level inverter feeding any given induction motor is described. The sector change logic is self-adaptive and is capable of taking the drive up to the six-step mode if needed. Steady-state and transient performance of proposed controller is experimentally verified on a 3.7-kW IM drive in the entire speed range. Close resemblance of the simulation and experimental results is shown

    A Dual Five-Level Inverter-Fed Induction Motor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor Voltage Balancing Using Only the Switching-State Redundancy—Part II

    No full text
    The open-loop control scheme presented in part I of this paper for a dual five-level-inverter-fed induction motor(IM) drive with two dc power supplies maintains dc-link capacitor voltage balancing and common-mode voltage (CMV) elimination throughout the operating range of the drive. The operating limitation of the proposed open-loop control scheme to take corrective action toward the existing unbalance in the dc-link-capacitor voltages is also pointed out in part I of this paper. As a solution to this, a simple closed-loop control scheme, which is based only on the switching-state redundancy, is proposed in this part of the paper. The proposed closed-loop control scheme not only prevents further unbalancing of capacitor voltages but also takes corrective actions to bring back the capacitor voltages in the balanced state. The proposed closed-loop scheme achieves dc-link capacitor voltage balancing and elimination of CMV together in the complete modulation range, including overmodulation of up to the 24-step operation. The proposed control scheme does not affect the output fundamental voltage generated by the inverter, as it effectively utilizes only the availability of redundant switching states of the inverter, and does not call for additional power circuit hardware. The scheme is presented with the simulation studies and experimentally verified with a 1.5-kW open-end winding IM drive

    Current-error space-vector-based hysteresis PWM controller for three-level voltage source inverter fed drives

    No full text
    A current-error space-vector-based PWM hysteresis controller is proposed for three-level voltage source inverter fed induction motor drive applications. A hexagonal boundary for the current-error space vector is formed by sensing the current-error space vector along three different axes, which are 120 degrees apart and are orthogonal to machine phase axes. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector lies, are switched to keep the current-error space vector within the hexagonal boundary. Selection amongst the three nearest voltage vectors is done by a simple region detection logic in all the sectors. Calculation of the machine voltage vector is not needed and information of the same is indirectly derived from the direction of current-error space vector. The controller uses a self-adaptive sector identification logic, which provides smooth transition between sectors (voltage levels), including over modulation region up to 12-step mode of operation. Inherent advantages of current hysteresis controller are retained with the added advantage of adjacent voltage vector selection for hysteresis PWM control. Simple look-up tables are only needed for sector and vector selection, based on the hysteresis controller output, for the proposed hysteresis PWM controller. Experimental verification is provided by implementing the proposed controller on a 1.5 kW open-end winding induction motor drive. The proposed controller can be extended for further levels of multi-level inverters for high-performance drives by constructing suitable look-up tables

    Three-Level Inverter Scheme With Common Mode Voltage Elimination and DC Link Capacitor Voltage Balancing for an Open-End Winding Induction Motor Drive

    No full text
    A dc link capacitor voltage balancing scheme along with common mode voltage elimination is proposed for an induction motor drive, with open-end winding structure. The motor is fed from both the ends with three-level inverters generating a five level output voltage space phasor structure. If switching combinations, with zero common mode voltage in the pole voltage, are used, then the resultant voltage space vector combinations are equivalent to that of a three-level inverter. The proposed inverter vector locations exhibit greater multiplicity in the inverter switching combinations which is suitably exploited to arrive at a capacitor voltage balancing scheme. This allows the use of a single dc link power supply for the combined inverter structure. The simultaneous task of common mode voltage elimination with dc link capacitor voltage balancing, using only the switching state redundancies, is experimentally verified on a 1.5-kW induction motor drive

    A five level inverter scheme with common mode volatge elimination by cascading conventional two level and three level NPC inverters for an induction motor drive

    No full text
    Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range

    Five-Level Inverter Topology for Induction Motor Drives With Common-Mode Voltage Elimination in Complete Modulation Range

    No full text
    Common-mode voltage (CMV) generated by different topologies of the pulse width modulated (PWM) inverters causes shaft voltage, bearing current and ground leakage current in the induction motor (IM) drive system. Consequently the premature mechanical failure (fluting) of machine bearings and conducted electromagnetic interference (EMI) are observed in the multilevel PWM inverter fed IM drive systems. A five-level inverter topology with switching state combination selection strategy for PWM control is proposed for an IM drive for complete elimination of CMV in the entire operating range of the drive, including over-modulation. The proposed scheme is based on a dual five-level inverter fed open-end winding IM drive structure. Each individual five-level inverter of the proposed drive is formed by cascading a three-level neutral point clamped (NPC) inverter with two conventional two-level inverters. Hence, the proposed individual five-level inverter offers simple power-bus structure with less number of power diodes as compared to the conventional NPC five-level inverter. The proposed open-end winding IM drive structure requires nearly half the dc-link voltage and provides increased number of redundant switching state combinations as compared to a single five-level NPC inverter fed conventional IM drive. The proposed CMV elimination scheme is experimentally verified on a 1.5 kW openend winding IM drive

    Switching frequency variation control in hysteresis PWM controller for IM drives using variable parabolic bands for current error space phasor

    No full text
    Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive
    corecore