30 research outputs found

    Continuity, Deconfinement, and (Super) Yang-Mills Theory

    Full text link
    We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl fermion on R^3xS^1 as a function of the fermion mass m and the compactification scale L. This theory reduces to thermal pure gauge theory as m->infinity and to circle-compactified (non-thermal) supersymmetric gluodynamics in the limit m->0. In the m-L plane, there is a line of center symmetry changing phase transitions. In the limit m->infinity, this transition takes place at L_c=1/T_c, where T_c is the critical temperature of the deconfinement transition in pure Yang-Mills theory. We show that near m=0, the critical compactification scale L_c can be computed using semi-classical methods and that the transition is of second order. This suggests that the deconfining phase transition in pure Yang-Mills theory is continuously connected to a transition that can be studied at weak coupling. The center symmetry changing phase transition arises from the competition of perturbative contributions and monopole-instantons that destabilize the center, and topological molecules (neutral bions) that stabilize the center. The contribution of molecules can be computed using supersymmetry in the limit m=0, and via the Bogomolnyi--Zinn-Justin (BZJ) prescription in the non-supersymmetric gauge theory. Finally, we also give a detailed discussion of an issue that has not received proper attention in the context of N=1 theories---the non-cancellation of nonzero-mode determinants around supersymmetric BPS and KK monopole-instanton backgrounds on R^3xS^1. We explain why the non-cancellation is required for consistency with holomorphy and supersymmetry and perform an explicit calculation of the one-loop determinant ratio.Comment: A discussion of the non-cancellation of the nonzero mode determinants around supersymmetric monopole-instantons in N=1 SYM on R^3xS^1 is added, including an explicit calculation. The non-cancellation is, in fact, required by supersymmetry and holomorphy in order for the affine-Toda superpotential to be reproduced. References have also been adde

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Exceptional thermodynamics: the equation of state of G2 gauge theory

    Full text link
    corecore