80 research outputs found

    Diversity of sympathetic vasoconstrictor pathways and their plasticity after spinal cord injury

    Get PDF
    Sympathetic vasoconstrictor pathways pass through paravertebral ganglia carrying ongoing and reflex activity arising within the central nervous system to their vascular targets. The pattern of reflex activity is selective for particular vascular beds and appropriate for the physiological outcome (vasoconstriction or vasodilation). The preganglionic signals are distributed to most postganglionic neurones in ganglia via synapses that are always suprathreshold for action potential initiation (like skeletal neuromuscular junctions). Most postganglionic neurones receive only one of these “strong” inputs, other preganglionic connections being ineffective. Pre- and postganglionic neurones discharge normally at frequencies of 0.5–1 Hz and maximally in short bursts at <10 Hz. Animal experiments have revealed unexpected changes in these pathways following spinal cord injury. (1) After destruction of preganglionic neurones or axons, surviving terminals in ganglia sprout and rapidly re-establish strong connections, probably even to inappropriate postganglionic neurones. This could explain aberrant reflexes after spinal cord injury. (2) Cutaneous (tail) and splanchnic (mesenteric) arteries taken from below a spinal transection show dramatically enhanced responses in vitro to norepinephrine released from perivascular nerves. However the mechanisms that are modified differ between the two vessels, being mostly postjunctional in the tail artery and mostly prejunctional in the mesenteric artery. The changes are mimicked when postganglionic neurones are silenced by removal of their preganglionic input. Whether or not other arteries are also hyperresponsive to reflex activation, these observations suggest that the greatest contribution to raised peripheral resistance in autonomic dysreflexia follows the modifications of neurovascular transmission

    The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: methodology

    Get PDF
    Background Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD) in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR) test (a proxy measure of endothelial function) for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1) endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2) endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men. Methods/Design A total of 1972 patients (812 men and 1160 women) undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events). Discussion This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of risk stratification in women on par with that of men

    The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus

    Get PDF
    The maternal separation paradigm has been applied to C57BL/6J mice as an animal developmental model for understanding structural deficits leading to abnormal behaviour. A maternal separation (MS) model was used on postnatal day (PND) 9, where the pups were removed from their mother for 24 h (MS24). When the pups were 10 weeks old, the level of anxiety and fear was measured with two behavioural tests; an open field test and an elevated plus maze test. The Barnes platform maze was used to test spatial learning, and memory by using acquisition trials followed by reverse trial sessions. The MS24 mice spent more time in the open arms of the elevated plus maze compared to controls, but no other treatment differences were found in the emotional behavioural tests. However, in the reverse trial for the Barnes maze test there was a significant difference in the frequency of visits to the old goal, the number of errors made by the MS24 mice compared to controls and in total distance moved. The mice were subsequently sacrificed and the total number of neurons estimated in the hippocampus using the optical fractionator. We found a significant loss of neurons in the dentate gyrus in MS mice compared to controls. Apparently a single maternal separation can impact the number of neurons in mouse hippocampus either by a decrease of neurogenesis or as an increase in neuron apoptosis. This study is the first to assess the result of maternal separation combining behaviour and stereology

    A Novel Approach to Determining Violence Risk in Schizophrenia: Developing a Stepped Strategy in 13,806 Discharged Patients

    Get PDF
    Clinical guidelines recommend that violence risk be assessed in schizophrenia. Current approaches are resource-intensive as they employ detailed clinical assessments of dangerousness for most patients. An alternative approach would be to first screen out patients at very low risk of future violence prior to more costly and time-consuming assessments. In order to implement such a stepped strategy, we developed a simple tool to screen out individuals with schizophrenia at very low risk of violent offending. We merged high quality Swedish national registers containing information on psychiatric diagnoses, socio-demographic factors, and violent crime. A cohort of 13,806 individuals with hospital discharge diagnoses of schizophrenia was identified and followed for up to 33 years for violent crime. Cox regression was used to determine risk factors for violent crime and construct the screening tool, the predictive validity of which was measured using four outcome statistics. The instrument was calibrated on 6,903 participants and cross-validated using three independent replication samples of 2,301 participants each. Regression analyses resulted in a tool composed of five items: male sex, previous criminal conviction, young age at assessment, comorbid alcohol abuse, and comorbid drug abuse. At 5 years after discharge, the instrument had a negative predictive value of 0.99 (95% CI = 0.98–0.99), meaning that very few individuals who the tool screened out (n = 2,359 out of original sample of 6,903) were subsequently convicted of a violent offence. Screening out patients who are at very low risk of violence prior to more detailed clinical assessment may assist the risk assessment process in schizophrenia

    Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure

    Get PDF
    Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy

    Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications

    Get PDF

    Intrathecal orexin A increases sympathetic outflow and respiratory drive, enhances baroreflex sensitivity and blocks the somato-sympathetic reflex

    No full text
    BACKGROUND: Intrathecal (i.t.) injection of orexin A (OX-A) increases blood pressure and heart rate (HR), but the effects of OX-A on sympathetic and phrenic, nerve activity, and the baroreflex(es), somato-sympathetic and hypoxic chemoreflex(es) are unknown. Experimental Approach: Urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats were examined in this study. The effects of i.t. OX-A (20 nmol 10 ÂμL-1) on cardiorespiratory parameters, and responses to stimulation of the sciatic nerve (electrical), arterial baroreceptors (phenylephrine hydrochloride, 0.01 mg kg⁻¹ i.v.) and peripheral (hypoxia) chemoreceptors were also investigated. Key Results: i.t. OX-A caused a prolonged dose-dependent sympathoexcitation, pressor response and tachycardia. The peak effect was observed at 20 nmol with increases in mean arterial pressure, HR and splanchnic sympathetic nerve activity (sSNA) of 32 mmHg, 52 beats per minute and 100% from baseline respectively. OX-A also dose-dependently increased respiratory drive, as indicated by a rise in phrenic nerve amplitude and a fall in phrenic nerve frequency, an increase in neural minute ventilation, a lengthening of the expiratory period, and a shortening of the inspiratory period. All effects of OX-A (20 nmol) were attenuated by the orexin receptor 1 antagonist SB 334867. OX-A significantly reduced both sympathoexcitatory peaks of somato-sympathetic reflex while increasing baroreflex sensitivity. OX-A increased the amplitude of the pressor response and markedly amplified the effect of hypoxia on sSNA. Conclusions: Thus, activation of OX receptors in rat spinal cord alters cardiorespiratory function and differentially modulates sympathetic reflexes.13 page(s

    The pre-Bötzinger complex and phase-spanning neurons in the adult rat

    No full text
    corecore