14 research outputs found

    An overview on microbial degradation of lindane

    No full text
    Lindane is a cyclic, saturated and highly chlorinated pesticide with a broad spectrum, which has been used worldwide for many decades to control a variety of pests, and also in human health and veterinary. Afterward, it has been demonstrated that lindane and its isomers may cause serious damage to health in the short and long term. Besides, lindane is known to be persistent in the environment and tends to bioaccumulate along the food chain. Thus, lindane residues remain in the environment for a long time and have been recently found in water, soil, sediments, plants, and animals all over the world, and even in human fluids and tissues. In this context, nowadays, scientists, working all over the world, are involved in developing lindane remediation technologies including physical, chemical, and biological techniques. This article provides updated information on the biologic degradation of lindane using different microorganisms such as bacteria, fungi, and algae, under both aerobic and anaerobic conditions.Fil: Sáez, Juliana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Alvarez, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Fuentes, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Universidad del Norte Santo Tomás de Aquino; Argentin

    Pesticidal plants for stored product pests on small-holder farms in Africa

    No full text
    Despite the near elimination of pests from food stores in industrialised nations, insects are still the most important challenge to food security for small-holder farmers in less developed nations. Losses are frequently as high as 20 %. Synthetic products provide effective control when used correctly but are not sustainable or universally appropriate and present many challenges for farmers, not least of all their cost. Pesticidal plants offer an economic, effective and often the only alternative. Much published research, however, overlooks critical knowledge gaps providing outputs that are unlikely to improve pesticidal plant use or improve food security. This chapter identifies opportunities for better targeted research and improvements for uptake and use of pesticidal plants. We also highlight how a deeper understanding of different morphs, gender and age of insect can influence experimental results and should be considered more carefully. To be effective plant materials need to show low animal and environmental toxicity at typical application levels but at the same time be effective against a wide range of target species, at low doses and with longevity. They must also be low cost, safe, compatible with other pest management technologies and stable and have no consequences for the stored products such as impairing flavour. Research should be targeted at optimising the efficacy of the pesticidal plants already known to have potential, and this should be supported by chemistry to fully understand spatial, temporal and phenotypic variability and nontarget impacts. Availability of plants is a limiting factor to uptake so propagation and cultivation of elite provenances would alleviate pressure on natural ecosystems and improve reliability of efficacy and supply when supported by improved harvesting techniques. The large-scale commercialisation of plants may not compete with synthetic products globally but local production may foster a mechanism to support and encourage uptake through local markets and value chains

    Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber Sprouting After Spinal Cord Injury

    No full text
    Injury to the spinal cord (SCI) can produce a constellation of problems including chronic pain, autonomic dysreflexia, and motor dysfunction. Neuroplasticity in the form of fiber sprouting or the lack thereof is an important phenomenon that can contribute to the deleterious effects of SCI. Aberrant sprouting of primary afferent fibers and synaptogenesis within incorrect dorsal horn laminae leads to the development and maintenance of chronic pain as well as autonomic dysreflexia. At the same time, interruption of connections between supraspinal motor control centers and spinal cord output cells, due to lack of successful regenerative sprouting of injured descending fiber tracts, contributes to motor deficits. Similarities in the molecular control of axonal growth of motor and sensory fibers have made the development of cogent therapies difficult. In this study, we discuss recent findings related to the degradation of inhibitory barriers and promotion of sprouting of motor fibers as a strategy for the restoration of motor function and note that this may induce primary afferent fiber sprouting that can contribute to chronic pain. We highlight the importance of careful attentiveness to off-target molecular- and circuit-level modulation of nociceptive processing while moving forward with the development of therapies that will restore motor function after SCI
    corecore