59 research outputs found
Atomically-thin micas as proton conducting membranes
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable
to thermal protons. For thicker two-dimensional (2D) materials, proton
conductivity diminishes exponentially so that, for example, monolayer MoS2 that
is just three atoms thick is completely impermeable to protons. This seemed to
suggest that only one-atom-thick crystals could be used as proton conducting
membranes. Here we show that few-layer micas that are rather thick on the
atomic scale become excellent proton conductors if native cations are
ion-exchanged for protons. Their areal conductivity exceeds that of graphene
and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas
exhibit this high conductivity inside the infamous gap for proton-conducting
materials, which extends from 100 C to 500 C. Areal conductivity of
proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well
above the current requirements for the industry roadmap. We attribute the fast
proton permeation to 5 A-wide tubular channels that perforate micas' crystal
structure which, after ion exchange, contain only hydroxyl groups inside. Our
work indicates that there could be other 2D crystals with similar nm-scale
channels, which could help close the materials gap in proton-conducting
applications
Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?
Background: Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders
Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus
BACKGROUND: Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially
mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas
mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC
has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in
metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC),
G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance.
RESULTS: This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter
diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (KM 0.06 mM at pH 5), high
catalytic efficiencies, pHopt of 5.5 and Topt at 45 degrees C. The enzyme is not thermostable (T of
18 minutes at 60 degrees C) and the calculated number of bonds between monomers and dimers do not give clear indications
for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z.
mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 A for C? when comparing GdPDC to that
of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci,
involving the regions Thr341 to Thr352 and Asn499 to Asp503.
CONCLUSIONS: This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future
research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily
closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the
enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the
host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity
on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in
G. diazotrophicus.IS
Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe
The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio
The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation
N-Methyl-d-aspartic acid (NMDA) receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future experiments to address open questions concerning NMDA receptor function
- …