71 research outputs found

    Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    No full text
    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as binder-free positive electrode and porous free-standing graphene film as negative electrode. Owing to their metal-like conductivity (~1.67Ă—106 S m-1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm-2 at 4 mA cm-2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm-2 and 6330 mF cm-3 at 1 mA cm-2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mW h cm-3 at a stack power density of 10.76 mW cm-3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm-3, this device still deliveries a stack energy density of 1.19 mW h cm-3, superior to most of the reported supercapacitors

    Electrochromic displays - The new black

    No full text

    Seeing is believing: a versatile new approach to optically transparent electrodes

    No full text

    Electrosynthesis of Conducting Polymer

    No full text

    Conducting Polymers

    No full text
    • …
    corecore