456 research outputs found

    Physisorption of positronium on quartz surfaces

    Full text link
    The possibility of having positronium (Ps) physisorbed at a material surface is of great fundamental interest, since it can lead to new insight regarding quantum sticking and is a necessary first step to try to obtain a Ps2_2 molecule on a material host. Some experiments in the past have produced evidence for physisorbed Ps on a quartz surface, but firm theoretical support for such a conclusion was lacking. We present a first-principles density-functional calculation of the key parameters determining the interaction potential between Ps and an α\alpha-quartz surface. We show that there is indeed a bound state with an energy of 0.14 eV, a value which agrees very well with the experimental estimate of 0.15\sim0.15 eV. Further, a brief energy analysis invoking the Langmuir-Hinshelwood mechanism for the reaction of physisorbed atoms shows that the formation and desorption of a Ps2_2 molecule in that picture is consistent with the above results.Comment: 5 pages, 3 figures, submitte

    Deuteron Momentum Distribution in KD2HPO4

    Full text link
    The momentum distribution in KD2PO4(DKDP) has been measured using neutron Compton scattering above and below the weakly first order paraelectric-ferroelectric phase transition(T=229K). There is very litte difference between the two distributions, and no sign of the coherence over two locations for the proton observed in the paraelectric phase, as in KH2PO4(KDP). We conclude that the tunnel splitting must be much less than 20mev. The width of the distribution indicates that the effective potential for DKDP is significantly softer than that for KDP. As electronic structure calculations indicate that the stiffness of the potential increases with the size of the coherent region locally undergoing soft mode fluctuations, we conclude that there is a mass dependent quantum coherence length in both systems.Comment: 6 pages 5 figure

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.211.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm2^{-2} to 1.3×1010 1.3\times 10^{10} cm2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    A new electromagnetic mode in graphene

    Full text link
    A new, weakly damped, {\em transverse} electromagnetic mode is predicted in graphene. The mode frequency ω\omega lies in the window 1.667<ω/μ<21.667<\hbar\omega/\mu<2, where μ\mu is the chemical potential, and can be tuned from radiowaves to the infrared by changing the density of charge carriers through a gate voltage.Comment: 5 pages, 4 figure

    Electrostatic traps for dipolar excitons

    Full text link
    We consider the design of two-dimensional electrostatic traps for dipolar indirect excitons. We show that the excitons dipole-dipole interaction, combined with the in-plane electric fields that arise due to the trap geometry, constrain the maximal density and lifetime of trapped excitons. We derive an analytic estimate of these values and determine their dependence on the trap geometry, thus suggesting the optimal design for high density trapping as a route for observing excitonic Bose-Einstein condensation.Comment: 5 pages, 3 figures. This 2nd version contains a revised Fig.3 + minor revisions to the discussion and abstrac

    The healing mechanism for excited molecules near metallic surfaces

    Full text link
    Radiation damage prevents the ability to obtain images from individual molecules. We suggest that this problem can be avoided for organic molecules by placing them in close proximity with a metallic surface. The molecules will then quickly dissipate any electronic excitation via their coupling to the metal surface. They may therefore be observed for a number of elastic scattering events that is sufficient to determine their structure.Comment: 4 pages, 4 figures. Added reference

    Hybrid phase at the quantum melting of the Wigner crystal

    Full text link
    We study the quantum melting of the two-dimensional Wigner crystal using a fixed node quantum Monte-Carlo approach. In addition to the two already known phases (Fermi liquid at large density and Wigner crystal at low density), we find a third stable phase at intermediate values of the density. The third phase has hybrid behaviors in between a liquid and a solid. This hybrid phase has the nodal structure of a Slater determinant constructed out of the bands of a triangular lattice.Comment: 5 pages, 4 figure

    Detection of Noble Gas Scintillation Light with Large Area Avalanche Photodiodes (LAAPDs)

    Full text link
    Large Area Avalanche Photodiodes (LAAPDs) were used for a series of systematic measurements of the scintillation light in Ar, Kr, and Xe gas. Absolute quantum efficiencies are derived. Values for Xe and Kr are consistent with those given by the manufacturer. For the first time we show that argon scintillation (128 nm) can be detected at a quantum efficiency above 40%. Low-pressure argon gas is shown to emit significant amounts of non-UV radiation. The average energy expenditure for the creation of non-UV photons in argon gas at this pressure is measured to be below 378 eV.Comment: 16 pages, 7 figure
    corecore