8 research outputs found
Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto's thyroiditis
Hashimoto's thyroiditis (HT) represents the most common cause of hypothyroidism and nonendemic goiter, but its clinical and pathological heterogeneity opens the question if this disease should be more properly considered as a spectrum of different thyroid conditions rather than as a single nosological entity. In this study, we analysed 133 cases of HT for the expression of galectin-3, a lectin molecule involved in malignant transformation, apoptosis and cell cycle control. An unexpected expression of galectin-3 was demonstrated in a subset of HT together with the presence of HBME-1, c-met and cyclin-D1 that are also involved in malignant transformation and deregulated cell growth. Furthermore, a loss of allelic heterozygosity in a specific cancer-related chromosomal region was demonstrated in some HT harbouring galectin-3-positive follicular cells, by using laser capture microdissection. On the basis of the morphological and molecular findings we identified four subsets of HT: (a) HT with classic features of chronic autoimmune thyroiditis; (b) HT associated to hyperplastic/adenomatous lesions; (c) HT harbouring thyroid cancer precursors; (d) HT associated to unequivocal thyroid microcarcinomas. Our findings provide a well-substantiated morphological and molecular demonstration that HT may include a spectrum of different thyroid conditions ranging from chronic autoimmune thyroiditis to thyroiditis triggered by specific immune-response to cancer-related antigens
Large needle aspiration biopsy and galectin-3 determination in selected thyroid nodules with indeterminate FNA-cytology
Thyroid fine-needle aspiration biopsy (FNA)-cytology is widely used for the preoperative characterisation of thyroid nodules but this task is difficult for follicular lesions, which often remain undefined. We propose a strategy for improving the preoperative characterisation of selected follicular thyroid proliferations, which is based on large needle aspiration biopsy (LNAB) and galectin-3 expression analysis. Eighty-five thyroid specimens were obtained by LNAB (20-gauge needles) from thyroid nodules with indeterminate follicular FNA-cytology. Aspirated material was processed as a tissue microbiopsy to obtain cell blocks for both cyto/histo-morphological evaluation and galectin-3 expression analysis, by using a purified monoclonal antibody to galectin-3 and a biotin-free immunoperoxidase staining method. Preoperative diagnosis was compared to the final histology. LNAB and cell-block technique allow a preliminary distinction between nodules with a homogeneous microfollicular/trabecular structure, as frequently observed in tumours, and lesions with mixed normo–micro–macrofollicular architecture, as observed in goitre. Furthermore, LNAB provides optimal substrates for galectin-3 expression analysis. Among 85 cases tested, 14 galectin-3-positive cases were discovered preoperatively (11 thyroid cancers and three adenomas confirmed at the final histology), whereas galectin-3-negative cases were 71 (one carcinoma and 70 benign proliferations at the final histology). Sensitivity, specificity and diagnostic accuracy of this integrated morphologic and phenotypic diagnostic approach were 91.6, 97.2 and 95.3%, respectively. In conclusion, LNAB plus galectin-3 expression analysis when applied preoperatively to selected thyroid nodules candidate to surgery can potentially reduce unnecessary thyroid resections
