5 research outputs found

    Learning to Configure Mathematical Programming Solvers by Mathematical Programming

    No full text
    International audienceWe discuss the issue of finding a good mathematical programming solver configuration for a particular instance of a given problem, and we propose a two-phase approach to solve it. In the first phase we learn the relationships between the instance, the configuration and the performance of the configured solver on the given instance. A specific difficulty of learning a good solver configuration is that parameter settings may not all be independent; this requires enforcing (hard) constraints, something that many widely used supervised learning methods cannot natively achieve. We tackle this issue in the second phase of our approach, where we use the learnt information to construct and solve an optimization problem having an explicit representation of the dependency/consistency constraints on the configuration parameter settings. We discuss computational results for two different instantiations of this approach on a unit commitment problem arising in the short-term planning of hydro valleys. We use logistic regression as the supervised learning methodology and consider CPLEX as the solver of interest

    Guidelines for Setting Up a mRNA Sequencing Experiment and Best Practices for Bioinformatic Data Analysis

    No full text
    RNA-sequencing, commonly referred to as RNA-seq, is the most recently developed method for the analysis of transcriptomes. It uses high-throughput next-generation sequencing technologies and has revolutionized our understanding of the complexity and dynamics of whole transcriptomes.In this chapter, we recall the key developments in transcriptome analysis and dissect the different steps of the general workflow that can be run by users to design and perform a mRNA-seq experiment as well as to process mRNA-seq data obtained by the Illumina technology. The chapter proposes guidelines for completing a mRNA-seq study properly and makes available recommendations for best practices based on recent literature and on the latest developments in technology and algorithms. We also remark the large number of choices available (especially for bioinformatic data analysis) in front of which the scientist may be in trouble.In the last part of the chapter we discuss the new frontiers of single-cell RNA-seq and isoform sequencing by long read technology

    Understanding tumor ecosystems by single-cell sequencing: promises and limitations

    No full text
    corecore