52 research outputs found

    Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter) and conversely, reduced pressure accelerates the growth (Volkmann). Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body.</p> <p>Methods</p> <p>This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve < 30° and curve > 30°) to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae.</p> <p>Results</p> <p>In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation.</p> <p>Conclusion</p> <p>From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the progression of curve.</p

    Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model

    Get PDF
    Background: The curveback lineage of guppy is characterized by heritable idiopathic-type spinal curvature thatdevelops during growth. Prior work has revealed several important developmental similarities to the human idiopathicscoliosis (IS) syndrome. In this study we investigate structural and histological aspects of the vertebrae that areassociated with spinal curvature in the curveback guppy and test for sexual dimorphism that might explain a femalebias for severe curve magnitudes in the population.Methods: Vertebrae were studied from whole-mount skeletal specimens of curved and non-curved adult males andfemales. A series of ratios were used to characterize structural aspects of each vertebra. A three-way analysis of variancetested for effects of sex, curvature, vertebral position along the spine, and all 2-way interactions (i.e., sex and curvature,sex and vertebra position, and vertebra position and curvature). Histological analyses were used to characterize microarchitecturalchanges in affected vertebrae and the intervertebral region.Results: In curveback, vertebrae that are associated with curvature demonstrate asymmetric shape distortion,migration of the intervertebral ligament, and vertebral thickening on the concave side of curvature. There is sexualdimorphism among curved individuals such that for several vertebrae, females have more slender vertebrae than domales. Also, in the region of the spine where lordosis typically occurs, curved and non-curved females have a reducedwidth at the middle of their vertebrae, relative to males.Conclusions: Based on similarities to human spinal curvatures and to animals with induced curves, the concaveconvexbiases described in the guppy suggest that there is a mechanical component to curve pathogenesis incurveback. Because idiopathic-type curvature in curveback is primarily a sagittal deformity, it is structurally more similarto Scheuermann kyphosis than IS. Anatomical differences between teleosts and humans make direct biomechanicalcomparisons difficult. However, study of basic biological systems involved in idiopathic-type spinal curvature incurveback may provide insight into the relationship between a predisposing aetiology, growth, and biomechanics.Further work is needed to clarify whether observed sex differences in vertebral characteristics are related to the femalebias for severe curves that is observed in the population

    European Society of Endodontology position statement: Management of deep caries and the exposed pulp

    Get PDF
    This position statement on the management of deep caries and the exposed pulp represents the consensus of an expert committee, convened by the European Society of Endodontology (ESE). Preserving the pulp in a healthy state with sustained vitality, preventing apical periodontitis and developing minimally invasive biologically based therapies are key themes within contemporary clinical endodontics. The aim of this statement was to summarize current best evidence on the diagnosis and classification of deep caries and caries‐induced pulpal disease, as well as indicating appropriate clinical management strategies for avoiding and treating pulp exposure in permanent teeth with deep or extremely deep caries. In presenting these findings, areas of controversy, low‐quality evidence and uncertainties are highlighted, prior to recommendations for each area of interest. A recently published review article provides more detailed information and was the basis for this position statement (Bjørndal et al. 2019, International Endodontic Journal, doi:10.1111/iej.13128). The intention of this position statement is to provide the practitioner with relevant clinical guidance in this rapidly developing area. An update will be provided within 5 years as further evidence emerges

    Cranial biomechanics in basal urodeles: the Siberian salamander (Salamandrella keyserlingii) and its evolutionary and developmental implications

    Get PDF
    Developmental changes in salamander skulls, before and after metamorphosis, afect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties afect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under diferent tissue properties and ossifcation sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stifness required to perform a function versus the fxation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossifcation pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplifcation potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles

    Brace technology thematic series: the dynamic derotation brace

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dynamic derotation brace (DDB) was designed in Greece in 1982, as a modification of the Boston brace. It is a custom-made, underarm spinal orthosis featuring aluminium blades set to produce derotating and anti-rotating effects on the thorax and trunk of patients with scoliosis. It is indicated for the non-operative correction of most curves, barring the very high thoracic ones, (when the apex vertebra is T5 or above). The purpose of this article is to familiarize physicians with the DDB, analyze the rationale behind its design, and present the published results of its application.</p> <p>Description & Principles</p> <p>The key feature of the DDB is the addition of the aluminium-made derotating blades posteriorly. These function as a force couple, which is added to the side forces exerted by the brace itself. Corrective forces are also directed through pads. One or more of previously proposed pathomechanical models of scoliosis may underline the corrective function of the DDB: it may act directly on the apical intervertebral disc, effecting correction through the Heuter-Volkman principle; the blades may produce an anti-rotatory element against the deforming "spiral composite muscle trunk rotator"; or it may alter the neuro-motor response by constantly providing new somatosensory input to the patient.</p> <p>Results</p> <p>Based on measurements of the Cobb and Perdriolle angles, up to 82% of patients remained stable or improved with the use of the DDB. Results have varied, though, depending on the type/location of the deformity. The overall results showed that 35% of the curves improved, 46% remained stable and 18% became worse, as assessed by measuring the Cobb angle. The DDB has also been shown to improve cosmesis (except for right thoracic curves) and leave several aspects of patient quality of life unaffected during use.</p> <p>Conclusion</p> <p>Conservative treatment of idiopathic scoliosis using the DDB has shown favorable results. Thoracic curves appear more resistant to both angular and rotatory correction. The published outcome data on the DDB support our belief that the incorporation of aluminium blades to other orthoses would likely improve their efficacy.</p

    A cross-sectional investigation of regional patterns of diet and cardio-metabolic risk in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of diet in India's rapidly progressing chronic disease epidemic is unclear; moreover, diet may vary considerably across North-South regions.</p> <p>Methods</p> <p>The India Health Study was a multicenter study of men and women aged 35-69, who provided diet, lifestyle, and medical histories, as well as blood pressure, fasting blood, urine, and anthropometric measurements. In each region (Delhi, n = 824; Mumbai, n = 743; Trivandrum, n = 2,247), we identified two dietary patterns with factor analysis. In multiple logistic regression models adjusted for age, gender, education, income, marital status, religion, physical activity, tobacco, alcohol, and total energy intake, we investigated associations between regional dietary patterns and abdominal adiposity, hypertension, diabetes, and dyslipidemia.</p> <p>Results</p> <p>Across the regions, more than 80% of the participants met the criteria for abdominal adiposity and 10 to 28% of participants were considered diabetic. In Delhi, the "fruit and dairy" dietary pattern was positively associated with abdominal adiposity [highest versus lowest tertile, multivariate-adjusted OR and 95% CI: 2.32 (1.03-5.23); P<sub>trend </sub>= 0.008] and hypertension [2.20 (1.47-3.31); P<sub>trend </sub>< 0.0001]. In Trivandrum, the "pulses and rice" pattern was inversely related to diabetes [0.70 (0.51-0.95); P<sub>trend </sub>= 0.03] and the "snacks and sweets" pattern was positively associated with abdominal adiposity [2.05 (1.34-3.14); P<sub>trend </sub>= 0.03]. In Mumbai, the "fruit and vegetable" pattern was inversely associated with hypertension [0.63 (0.40-0.99); P<sub>trend </sub>= 0.05] and the "snack and meat" pattern appeared to be positively associated with abdominal adiposity.</p> <p>Conclusions</p> <p>Cardio-metabolic risk factors were highly prevalent in this population. Across all regions, we found little evidence of a Westernized diet; however, dietary patterns characterized by animal products, fried snacks, or sweets appeared to be positively associated with abdominal adiposity. Conversely, more traditional diets in the Southern regions were inversely related to diabetes and hypertension. Continued investigation of diet, as well as other environmental and biological factors, will be needed to better understand the risk profile in this population and potential means of prevention.</p

    Biomechanical spinal growth modulation and progressive adolescent scoliosis – a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE

    Get PDF
    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The text for this debate was written by Dr Ian A Stokes. It evaluates the hypothesis that in progressive scoliosis vertebral body wedging during adolescent growth results from asymmetric muscular loading in a "vicious cycle" (vicious cycle hypothesis of pathogenesis) by affecting vertebral body growth plates (endplate physes). A frontal plane mathematical simulation tested whether the calculated loading asymmetry created by muscles in a scoliotic spine could explain the observed rate of scoliosis increase by measuring the vertebral growth modulation by altered compression. The model deals only with vertebral (not disc) wedging. It assumes that a pre-existing scoliosis curve initiates the mechanically-modulated alteration of vertebral body growth that in turn causes worsening of the scoliosis, while everything else is anatomically and physiologically 'normal' The results provide quantitative data consistent with the vicious cycle hypothesis. Dr Stokes' biomechanical research engenders controversy. A new speculative concept is proposed of vertebral symphyseal dysplasia with implications for Dr Stokes' research and the etiology of AIS. What is not controversial is the need to test this hypothesis using additional factors in his current model and in three-dimensional quantitative models that incorporate intervertebral discs and simulate thoracic as well as lumbar scoliosis. The growth modulation process in the vertebral body can be viewed as one type of the biologic phenomenon of mechanotransduction. In certain connective tissues this involves the effects of mechanical strain on chondrocytic metabolism a possible target for novel therapeutic intervention

    Impact of diet on cardiometabolic health in children and adolescents

    Full text link
    corecore