25 research outputs found

    A Common Carcinogen Benzo[a]pyrene Causes Neuronal Death in Mouse via Microglial Activation

    Get PDF
    BACKGROUND: Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked) food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our study throws light on other health hazards that such pollutants may exert

    The role of microglia in human disease: therapeutic tool or target?

    Get PDF

    Future Directions of the Prokaryotic Chromosome Field

    No full text
    In September 2023, the Biology and Physics of Prokaryotic Chromosomes meeting ran at the Lorentz Center in Leiden, The Netherlands. As part of the workshop, those in attendance developed a series of discussion points centered around current challenges for the field, how these might be addressed, and how the field is likely to develop over the next 10 years. The Lorentz Center staff facilitated these discussions via tools aimed at optimizing productive interactions. This Perspective article is a summary of these discussions and reflects the state-of-the-art of the field. It is expected to be of help to colleagues in advancing their own research related to prokaryotic chromosomes and inspiring novel interdisciplinary collaborations. This forward-looking perspective highlights the open questions driving current research and builds on the impressive recent progress in these areas as represented by the accompanying reviews, perspectives, and research articles in this issue. These articles underline the multi-disciplinary nature of the field, the multiple length scales at which chromatin is studied in vitro and in and highlight the differences and similarities of bacterial and archaeal chromatin and chromatin-associated processes
    corecore