70 research outputs found

    Reactive Oxygen Species Suppress Cardiac NaV1.5 Expression through Foxo1

    Get PDF
    NaV1.5 is a cardiac voltage-gated Na+ channel αsubunit and is encoded by the SCN5a gene. The activity of this channel determines cardiac depolarization and electrical conduction. Channel defects, including mutations and decrease of channel protein levels, have been linked to the development of cardiac arrhythmias. The molecular mechanisms underlying the regulation of NaV1.5 expression are largely unknown. Forkhead box O (Foxo) proteins are transcriptional factors that bind the consensus DNA sequences in their target gene promoters and regulate the expression of these genes. Comparative analysis revealed conserved DNA sequences, 5′-CAAAACA-3′ (insulin responsive element, IRE), in rat, mouse and human SCN5a promoters with the latter two containing two overlapping Foxo protein binding IREs, 5′-CAAAACAAAACA-3′. This finding led us to hypothesize that Foxo1 regulates NaV1.5 expression by directly binding the SCN5a promoter and affecting its transcriptional activity. In the present study, we determined whether Foxo1 regulates NaV1.5 expression at the transcriptional level and also defined the role of Foxo1 in hydrogen peroxide (H2O2)-mediated NaV1.5 suppression in HL-1 cardiomyocytes using chromatin immunoprecipitation (ChIP), constitutively nuclear Foxo1 expression, and RNAi Foxo1 knockdown as well as whole cell voltage-clamp recordings. ChIP with anti-Foxo1 antibody and follow-up semi-quantitative PCR with primers flanking Foxo1 binding sites in the proximal SCN5a promoter region clearly demonstrated enrichment of DNA, confirming Foxo1 recruitment to this consensus sequence. Foxo1 mutant (T24A/S319A-GFP, Foxo1-AA-GFP) was retained in nuclei, leading to a decrease of NaV1.5 expression and Na+ current, while silencing of Foxo1 expression by RNAi resulted in the augmentation of NaV1.5 expression. H2O2 significantly reduced NaV1.5 expression by promoting Foxo1 nuclear localization and this reduction was prevented by RNAi silencing Foxo1 expression. These studies indicate that Foxo1 negatively regulates NaV1.5 expression in cardiomyocytes and reactive oxygen species suppress NaV1.5 expression through Foxo1

    Co-bedding as a Comfort measure For Twins undergoing painful procedures (CComForT Trial)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-bedding, a developmental care strategy, is the practice of caring for diaper clad twins in one incubator (versus separating and caring for each infant in separate incubators), thus creating the opportunity for skin-to-skin contact and touch between the twins. In studies of mothers and their infants, maternal skin-to-skin contact has been shown to decrease procedural pain response according to both behavioral and physiological indicators in very preterm neonates. It is uncertain if this comfort is derived solely from maternal presence or from stabilization of regulatory processes from direct skin contact. The intent of this study is to compare the comfort effect of co-bedding (between twin infants who are co-bedding and those who are not) on infant pain response and physiologic stability during a tissue breaking procedure (heelstick).</p> <p>Methods/Design</p> <p>Medically stable preterm twin infants admitted to the Neonatal Intensive Care Unit will be randomly assigned to a co-bedding group or a standard care group. Pain response will be measured by physiological and videotaped facial reaction using the Premature Infant Pain Profile scale (PIPP). Recovery from the tissue breaking procedure will be determined by the length of time for heart rate and oxygen saturation to return to baseline. Sixty four sets of twins (n = 128) will be recruited into the study. Analysis and inference will be based on the intention-to-treat principle.</p> <p>Discussion</p> <p>If twin contact while co-bedding is determined to have a comforting effect for painful procedures, then changes in current neonatal care practices to include co-bedding may be an inexpensive, non invasive method to help maintain physiologic stability and decrease the long term psychological impact of procedural pain in this high risk population. Knowledge obtained from this study will also add to existing theoretical models with respect to the exact mechanism of comfort through touch.</p> <p>Trial registration</p> <p>NCT00917631</p

    PET Scans for Staging and Restaging in Diffuse Large B-Cell and Follicular Lymphomas

    Get PDF
    Positron emission tomography (PET)-CT was recommended in updated international guidelines for staging/restaging of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). In FL, PET was previously regarded as a research application only. This review concentrates on new publications related to PET in these diseases. In DLBCL, PET appears appropriate for staging using prognostic indices established with CT and baseline PET parameters, e.g. metabolic tumour volume, are prognostic of outcome. Early complete metabolic response (CMR) predicts end-of-treatment CMR with excellent prognosis. Patients without CMR at interim should not have treatment altered, but have a worse prognosis, and patients with other high risk features may need closer monitoring. The end-of-treatment scan is confirmed as the standard for remission assessment using Deauville criteria, which are also predictive for patients undergoing ASCT. In FL, PET is more sensitive for staging than CT but misses bone marrow involvement. PET-CT identifies patients at risk of progression after induction chemotherapy better than CT
    • …
    corecore