61 research outputs found

    Nafion-TiO2 composite DMFC membranes: Physico-chemical properties of the filier versus electrochemical performance

    Get PDF
    TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm-2 was achieved under oxygen feed at 145°C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes. © 2004 Elsevier Ltd. All rights reserved

    Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells

    Get PDF
    Composite Nafion membranes containing various amounts of TiO2 (3 wt%, 5 wt% and 10 wt%) were investigated for operation in high temperature Direct Methanol Fuel Cells (DMFCs). Maximum power density of 350 mW cm -2 was achieved in the presence of oxygen feed at 145°C for the composite membranes containing 3-5 wt% TiO2; whereas, the maximum power density with air feed was about 210 mW cm-2. Moreover, an investigation of the influence of titanium oxide particle size on the electrochemical behaviour of the composite membranes for high temperature operation has been carried out. The DMFC performance increases as the mean particle size of the TiO2 filler decreases. This indicates an influence of the filler morphology on the electrochemical properties of the composite membranes. © J. New. Mat. Electrochem. Systems

    Central Action of Peripherally Applied Botulinum Toxin Type A on Pain and Dural Protein Extravasation in Rat Model of Trigeminal Neuropathy

    Get PDF
    BACKGROUND: Infraorbital nerve constriction (IoNC) is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A) can reduce pain and dural extravasation in this model. ----- METHODOLOGY/PRINCIPAL FINDINGS: Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg) into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue - plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks). Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl) into the trigeminal ganglion completely preventing BoNT/A effects. ----- CONCLUSIONS/SIGNIFICANCE: Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action

    Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana)

    Get PDF
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic E. coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analyzed. Among hundreds of compounds, only a few homologous compounds were identified that contained isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole containing analogs, sulfonamides, furanones, flavanones, and known to possess broad-spectrum antimicrobial properties, and possess anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The neurobiological link between OCD and ADHD

    Get PDF

    Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells

    No full text
    Composite Nafion membranes containing various amounts of TiO2 (3 wt%, 5 wt% and 10 wt%) were investigated for operation in high temperature Direct Methanol Fuel Cells (DMFCs). Maximum power density of 350 mW cm -2 was achieved in the presence of oxygen feed at 145°C for the composite membranes containing 3-5 wt% TiO2; whereas, the maximum power density with air feed was about 210 mW cm-2. Moreover, an investigation of the influence of titanium oxide particle size on the electrochemical behaviour of the composite membranes for high temperature operation has been carried out. The DMFC performance increases as the mean particle size of the TiO2 filler decreases. This indicates an influence of the filler morphology on the electrochemical properties of the composite membranes. © J. New. Mat. Electrochem. Systems
    corecore