59 research outputs found

    DNA Aptamers as Molecular Probes for Colorectal Cancer Study

    Get PDF
    Understanding the molecular features of specific tumors can increase our knowledge about the mechanism(s) underlying disease development and progression. This is particularly significant for colorectal cancer, which is a heterogeneous complex of diseases developed in a sequential manner through a multistep carcinogenic process. As such, it is likely that tumors with similar characteristics might originate in the same manner and have a similar molecular behavior. Therefore, specific mapping of the molecular features can be potentially useful for both tumor classification and the development of appropriate therapeutic regimens. However, this can only be accomplished by developing high-affinity molecular probes with the ability to recognize specific markers associated with different tumors. Aptamers can most easily meet this challenge based on their target diversity, flexible manipulation and ease of development.Using a method known as cell-based Systematic Evolution of Ligands by Exponential enrichment (cell-SELEX) and colorectal cancer cultured cell lines DLD-1 and HCT 116, we selected a panel of target-specific aptamers. Binding studies by flow cytometry and confocal microscopy showed that these aptamers have high affinity and selectivity. Our data further show that these aptamers neither recognize normal colon cells (cultured and fresh), nor do they recognize most other cancer cell lines tested.The selected aptamers can identify specific biomarkers associated with colorectal cancers. We believe that these probes could be further developed for early disease detection, as well as prognostic markers, of colorectal cancers

    Biophysical interactions in tropical agroforestry systems

    Full text link
    sequential systems, simultaneous systems Abstract. The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interac-tions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offse

    Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices

    No full text
    An integrated cell cultivation and protein product separation process was developed using a new type of supermacroporous polyacrylamide gel, called cryogel (pAAm-cryogel) support matrix. Human fibrosarcoma HT1080 and human colon cancer HCT116 cell lines were used to secrete urokinase (an enzyme of immense therapeutic utility) into the culture medium. The secreted protein was isolated from the circulating medium using a chromatographic capture column. A pAAm cryogel support with covalently coupled gelatin (gelatin-pAAm cryogel) was used for the cultivation of anchorage dependent cells in the continuous cell culture mode in 5% carbon dioxide atmosphere. The cells were attached to the matrix within 4-6 h of inoculation and grew as a tissue sheet inside the cryogel matrix. Continuous urokinase secretion into the circulating medium was monitored as a parameter of growth and viability of cells inside the bioreactor. No morphological changes were observed in the cells eluted from the gelatin-cryogel support and re-cultured in T-flask. The gelatin-pAAm cryogel bioreactor was further connected to a pAAm cryogel column carrying Cu(II)-iminodiacetic acid (Cu(II)-IDA)-ligands (Cu(II)-IDA-pAAm cryogel), which had been optimized for the capture of urokinase from the conditioned medium of the cell lines. Thus an automated system was built, which integrated the features of a hollow fiber reactor with a chromatographic protein separation system. The urokinase was continuously captured by the Cu(II)-IDA-pAAm cryogel column and periodically recovered through elution cycles. The urokinase activity increased from 250 PU/mg in the culture fluid to 2,310 PU/mg after recovery from the capture column which gave about ninefold purification of the enzyme. Increased productivity was achieved by operating integrated bioreactor system continuously for 32 days under product inhibition free conditions during which no back-pressure or culture contamination was observed. A total 152,600 Plough units of urokinase activity was recovered from 500 mL culture medium using 38 capture columns over a period of 32 days. (c) 2006 Wiley Periodicals, Inc
    • …
    corecore