6 research outputs found

    Predicting Mechanical Properties Using Continuum Mechanics-Based Approach: Micro-mechanics and Finite Element Analysis

    No full text
    The mechanical properties of nano-structured materials are important field of exploration in the fields of materials science and other engineering disciplines. Thorough understanding of underlying material structure and resulting properties require a variety of tools depending on the length scales of interest. This chapter reviews continuum mechanics-based techniques, with an emphasis on micro-scale modeling techniques: analytical and computational. In addition to micro-mechanics, different approaches to multiscale modeling are presented. With the appropriate choice of techniques, models can be bridged across multiple length scales leading to mechanistic understanding of the mechanics of materials. Some illustrative examples are also discussed that utilize the techniques presented here

    Mechanical Behavior of Carbon Nanotube-Reinforced Polymer Composites

    No full text
    Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nm, or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials [1–3]
    corecore