542 research outputs found
Search algorithms as a framework for the optimization of drug combinations
Combination therapies are often needed for effective clinical outcomes in the
management of complex diseases, but presently they are generally based on
empirical clinical experience. Here we suggest a novel application of search
algorithms, originally developed for digital communication, modified to
optimize combinations of therapeutic interventions. In biological experiments
measuring the restoration of the decline with age in heart function and
exercise capacity in Drosophila melanogaster, we found that search algorithms
correctly identified optimal combinations of four drugs with only one third of
the tests performed in a fully factorial search. In experiments identifying
combinations of three doses of up to six drugs for selective killing of human
cancer cells, search algorithms resulted in a highly significant enrichment of
selective combinations compared with random searches. In simulations using a
network model of cell death, we found that the search algorithms identified the
optimal combinations of 6-9 interventions in 80-90% of tests, compared with
15-30% for an equivalent random search. These findings suggest that modified
search algorithms from information theory have the potential to enhance the
discovery of novel therapeutic drug combinations. This report also helps to
frame a biomedical problem that will benefit from an interdisciplinary effort
and suggests a general strategy for its solution.Comment: 36 pages, 10 figures, revised versio
Stimulation of Na<sup>+</sup>/H<sup>+</sup> Exchanger Isoform 1 Promotes Microglial Migration
Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. © 2013 Shi et al
The endothelial-specific regulatory mutation, Mvwf1, is a common mouse founder allele
Mvwf1 is a cis-regulatory mutation previously identified in the RIIIS/J mouse strain that causes a unique tissue-specific switch in the expression of an N-acetylgalactosaminyltransferase, B4GALNT2, from intestinal epithelium to vascular endothelium. Vascular B4galnt2 expression results in aberrant glycosylation of von Willebrand Factor (VWF) and accelerated VWF clearance from plasma. We now report that 13 inbred mouse strains share the Mvwf1 tissue-specific switch and low VWF phenotype, including five wild-derived strains. Genomic sequencing identified a highly conserved 97-kb Mvwf1 haplotype block shared by these strains that encompasses a 30-kb region of high nucleotide sequence divergence from C57BL6/J flanking B4galnt2 exon 1. The analysis of a series of bacterial artificial chromosome (BAC) transgenes containing B4galnt2 derived from the RIIIS/J or C57BL6/J inbred mouse strains demonstrates that the corresponding sequences are sufficient to confer the vessel (RIIIS/J) or intestine (C57BL6/J)-specific expression patterns. Taken together, our data suggest that the region responsible for the Mvwf1 regulatory switch lies within an approximately 30-kb genomic interval upstream of the B4galnt2 gene. The observation that Mvwf1 is present in multiple wild-derived strains suggests that this locus may be retained in wild mouse populations due to positive selection. Similar selective pressures could contribute to the high prevalence of von Willebrand disease in humans
Plastic Pollution and Small Juvenile Marine Turtles: A Potential Evolutionary Trap
The ingestion of plastic by marine turtles is now reported for all species. Small juvenile turtles (including post-hatchling and oceanic juveniles) are thought to be most at risk,
due to feeding preferences and overlap with areas of high plastic abundance. Their remote and dispersed life stage, however, results in limited access and assessments.
Here, stranded and bycaught specimens from Queensland Australia, Pacific Ocean (PO;n = 65; 1993–2019) and Western Australia, Indian Ocean (IO; n = 56; 2015–2019) provide a unique opportunity to assess the extent of plastic (> 1mm) ingestion in five species [green (Chelonia mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys imbricata), olive ridley (Lepidochelys olivacea), and flatback turtles (Natator depressus)]. In the Pacific Ocean, high incidence of ingestion occurred in green (83%; n = 36), loggerhead (86%; n = 7), flatback (80%; n = 10) and olive ridley turtles (29%; n = 7).
There was an overall lower incidence in IO; highest being in the flatback (28%; n = 18), the loggerhead (21%; n = 14) and green (9%; n = 22). No macroplastic debris ingestion
was documented for hawksbill turtles in either site although sample sizes were smaller for this species (PO n = 5; IO n = 2). In the Pacific Ocean, the majority of ingested debris
was made up of hard fragments (mean of all species 52%; species averages 46–97%), whereas for the Indian Ocean these were filamentous plastics (52%; 43–77%). The most abundant colour for both sites across all species was clear (PO: 36%; IO: 39%), followed by white for PO (36%) then green and blue for IO (16%; 16%). The polymers most commonly ingested by turtles in both oceans were polyethylene (PE; PO-58%;
IO-39%) and polypropylene (PP; PO-20.2%; IO-23.5%). We frame the high occurrence of ingested plastic present in this marine turtle life stage as a potential evolutionary trap as they undertake their development in what are now some of the most polluted areas of the global oceans
Causal hierarchy within the thalamo-cortical network in spike and wave discharges
Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al
Relationships of dietary patterns with body composition in older adults differ by gender and PPAR-γ Pro12Ala genotype
Dietary patterns may better capture the multifaceted effects of diet on body composition than individual nutrients or foods. The objective of this study was to investigate the dietary patterns of a cohort of older adults, and examine relationships of dietary patterns with body composition. The influence of a polymorphism in the peroxisome proliferator-activated receptor-γ (PPAR-γ) gene was considered.
The Health, Aging and Body Composition (Health ABC) Study is a prospective cohort study of 3,075 older adults. Participants’ body composition and genetic variation were measured in detail. Food intake was assessed with a semi-quantitative food frequency questionnaire (Block Dietary Data Systems, Berkeley, CA), and dietary patterns of 1,809 participants with complete data were derived by cluster analysis.
Six clusters were identified, including a ‘Healthy foods’ cluster characterized by higher intake of low-fat dairy products, fruit, whole grains, poultry, fish and vegetables. An interaction was found between dietary patterns and PPAR-γ Pro12Ala genotype in relation to body composition. While Pro/Pro homozygous men and women in the ‘Healthy foods’ cluster did not differ significantly in body composition from those in other clusters, men with the Ala allele in the ‘Healthy foods’ cluster had significantly lower levels of adiposity than those in other clusters. Women with the Ala allele in the ‘Healthy foods’ cluster differed only in right thigh intermuscular fat from those in other clusters.
Relationships between diet and body composition in older adults may differ by gender and by genetic factors such as PPAR-γ Pro12Ala genotype
Depression, Rational Identity and the Educational Imperative: Concordance-Finding in Tricky Diagnostic Moments
It is well-documented, within most medical and much health psychology, that many individuals find diagnoses of depression confusing or even objectionable. Within a corpus of research and practical clinical guidance dominated by the social-cognitive paradigm, the explanation for resistance to a depression diagnosis (or advice pertaining to it) within specific interactions is bordering on the canonical; patients misunderstand depression itself, often as an output of an associated social stigma that distorts public knowledge. The best way to overcome corollary resistance in situ is, logically thus, taken to be a clarification of the true (clinical) nature of depression. In this paper, exploring the diagnosis of depression in UK primary care contexts, the social-cognitive position embedded in contemporary medical reasoning around this matter is critically addressed. It is firstly highlighted how, even in a great deal of extant public health research, the link between an individual holding “correct” medical knowledge and being actively compliant with it is far from inevitable. Secondly, and with respect to concerns around direct communication in clinical contexts, a body of research emergent of Discursive Psychology and Conversation Analysis is explored so as to shed light on how non-cognitive concerns (not least those around the local interactional management of a patient’s social identity) that can inform the manner in which ostensibly “tricky” medical talk plays-out in practice, especially in cases where a mental illness is at stake. Finally, observations are drawn together in a formal Discursive Psychological analysis of a small but highly illustrative sample of three cases where a depression diagnosis is initially questioned or disputed by a patient in primary care but, following further in-consultation activity, concordance with the diagnosis is ultimately reached—a specific issue hitherto unaddressed in either DP or CA fields. These cases specifically reveal the coordinative attention of interlocutors to immediate concerns regarding how the patient might maintain a sense of being an everyday and rational witness to their own lives; indeed, the very act of challenging the diagnosis emerges as a means by which a patient can open up conversational space within the consultation to address such issues. While the veracity of the social-cognitive model is not deemed to be without foundation herein, it is concluded that attention to local interactional concerns might firstly be accorded, such that the practical social concerns and skills of practitioners and patients alike might not be overlooked in the endeavour to produce generally applicable theories
Retinal Degeneration Progression Changes Lentiviral Vector Cell Targeting in the Retina
In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina
Evidence for Multiple Functional Copies of the Male Sex-Determining Locus, Sry, in African Murine Rodents
Southern hybridization data suggest that the male sex-determining locus, Sry, is often duplicated in rodents. Here we explore DNA sequence evolution of orthologous and paralogous copies of Sry isolated from six species of African murines. PCR amplification followed by direct sequencing revealed from two to four copies of Sry per species. All copies include a long open reading frame, with a stop codon that coincides closely with the stop codon of the house mouse, Mus musculus, a species known to have a single copy of Sry. A phylogenetic analysis suggests that there are at least seven paralogous copies of Sry in this group of rodents. Putative orthologues are identical; sequence divergence among putative paralogues ranges from 1 to 8% (excluding the CAG repeat), with much lower levels of divergence in the high-mobility group (HMG-box) region than in the C-terminal region. A high proportion of nucleotide substitutions in both regions result in amino-acid replacement. The long open reading frame, conserved HMG-box, and pattern of evolution of the putative paralogues suggest that they are functional.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42367/1/239-45-1-60_45n1p60.pd
- …