98 research outputs found

    Guidelines for reporting the quality of clinical case reports in Endodontics: a development protocol.

    Get PDF
    Case reports are used to communicate interesting, new or rare condition/s, innovative treatment approaches or novel techniques. Apart from informing readers, such information has the potential to contribute towards further scientific studies and the development of newer management modalities. Reporting guidelines are used to inform authors of the quality standards required to ensure their case report is accurate, complete and transparent. The aim of this project is to develop and disseminate new guidelines - Preferred Reporting Items for Case reports in Endodontics (PRICE). The primary aim is to aid authors when constructing case reports in the field of Endodontics to ensure the highest possible reporting standards are adopted. The project leaders (PD and VN) formed a steering committee comprising of six additional members. Subsequently, a four-phase consensus process will be used: 1. Pre-online consensus activities (literature search, creating PRICE guidelines), 2. Online Consensus (Delphi Process), 3. Face-to-face consensus meeting, and 4. Post-meeting activities. The steering committee will develop the PRICE guidelines by identifying relevant items (quality standards) derived from the CAse REport guidelines and Clinical and Laboratory Images in Publications principles, focussing on the content of case reports. Following this, the steering committee will identify a PRICE Delphi Group (PDG) consisting of 30 members including academicians, practitioners, and members of the public. The individual items (components) of the PRICE checklist will be evaluated by the PDG based on a 9-point Likert scale. Only items scored between 7 and 9 by 70% or more members will be included in the draft checklist. The Delphi process will be continued until a consensus is reached and a final set of items agreed by the PDG members. Following this, a PRICE Face-to-Face meeting group (PFMG) will be formed with 20 members to achieve a final consensus. The final consensus-based checklist and flow diagram will be evaluated and approved by selected members of the PDG and PFMG. The approved PRICE checklist will be published in relevant journals, and disseminated via contacts in academic institutions and national endodontic societies, as well as being presented at scientific/clinical meetings. This article is protected by copyright. All rights reserved

    Hsp90 governs dispersion and drug resistance of fungal biofilms

    Get PDF
    Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections

    Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial.

    Get PDF
    An in vitro study was undertaken to evaluate the compatibility of indigenous plant growth promoting rhizobacteria (PGPR) with commonly used inorganic and organic sources of fertilizers in tea plantations. The nitrogenous, phosphatic and potash fertilizers used for this study were urea, rock phosphate and muriate of potash, respectively. The organic sources of fertilizers neem cake, composted coir pith and vermicompost were also used. PGPRs such as nitrogen fixer; Azospirillum lipoferum, Phosphate Solubilizing Bacteria (PSB); Pseudomonas putida, Potassium Solubilizing Bacteria (KSB); Burkholderia cepacia and Pseudomonas putida were used for compatibility study. Results were indicated that PGPRs preferred the coir pith and they proved their higher colony establishment in the formulation except Azospirillum spp. that preferred vermicompost for their establishment. The optimum dose of neem cake powder

    An internet of things and blockchain based smart campus architecture

    Get PDF
    Rapid development in science and information technologies, such as the Internet of things, has led to a growth in the number of studies and research papers on smart cities in recent years and more specifically on the construction of smart campus technologies. This paper will review the concept of a smart campus, discuss the main technologies deployed, and then propose a new novel framework for a smart campus. The architecture of this new smart campus approach will be discussed with particular consideration of security and privacy systems, the Internet of things, and blockchain technologies

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Women at work in Ulster 1845-1911

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN009739 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore