12 research outputs found

    Heavy Metal Removal from Wastewaters by Biosorption: Mechanisms and Modeling

    No full text
    Many industrial activities result in heavy metal dispersion in the environment worldwide. Heavy metals are persistent contaminants, which get into contact with living organisms and humans creating serious environmental disorders. Metals are commonly removed from wastewaters by means of physical-chemical processes, but often microbes are also enrolled to control metal fate. When microorganisms are used as biosorbents for metal entrapment, a process called “biosorption” occurs. Biosorption efficiency is significantly influenced by many parameters such as environmental factors, the sorbing material and the metal species to be removed, and highly depends on whether microbial cultures are alive or dead. Moreover, the presence of biofilm agglomerates is of major importance for metal uptake onto extracellular polymeric substances. In this chapter, the effect of the above mentioned variables on biosorption performance was reviewed. Among the environmental factors, pH rules metal mobility and speciation. Temperature has a lower influence with an optimal value ranging between 20 and 35 °C. The co-presence of more metals usually decreases the biosorption efficiency of each single metal. Biosorption efficiency can be enhanced by using living microorganisms due to the interaction with active functional groups and the occurrence of transport phenomena into the cells. The existing mathematical modeling approaches used for heavy metal biosorption were overviewed. Several isotherms, obtained in batch conditions, are available for modeling biosorption equilibria and kinetics. In continuous systems, most of the models are used to predict the breakthrough curves. However, the modeling of complex continuous-flow reactors requires further research efforts for better incorporating the effect of the operating parameters and hydrodynamics

    Determination of Inner Implant's Volumes: A Pilot Study for Microleakage Quantification by Stereomicroscopy and Spectrophotometry

    No full text

    The biogeography of polymicrobial infection

    No full text

    References

    No full text

    The biosynthesis and functionality of the cell-wall of lactic acid bacteria.

    No full text
    The cell wall of lactic acid bacteria has the typical gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attributes of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids

    Oral microbiome and health

    No full text
    corecore