4 research outputs found

    Investigation of various factors affecting encapsulation on the In-Cap automatic capsule-filling machine

    No full text
    The purpose of this study was to determine the factors that influence fill weight and weight variability of capsules produced on the In-Cap and to assess any differences in terms of capsule defects between gelatin and HPMC (Quali-V) shells. The In-Cap is an automatic tamping type capsule-filling machine and the low output of ≈3000 capsules/hour makes it ideal for early formulation development and phase I/IIa clinical supplies manufacture. Four commonly used excipients (Avicel PH101, Avicel PH302, A-Tab, and Prosolv HD90) and a poorly flowing drug blend were encapsulated at various pin settings and powder bed heights. The average fill weight and coefficient of weight variation were determined. The percentage of defective capsules formed during encapsulation was calculated. Results of the study showed that pin setting was critical for controlling the fill weight and the weight variation. The order of pin setting with pin 1 (closer to the powder chute) set to a relatively higher position and pin 4 (before ejection) set to a lower position was found to give higher fill weights with relatively lower weight variability. The powder bed height influenced the fill weight for poorly flowing powders. The capsule machine speed did not appear to significantly influence the fill weight. The fill weight and weight variation were found to depend on the flow property of the material. A large percentage of defective capsules was obtained using HPMC shell size #00. Some of the commonly observed defects included split caps and improperly closed filled capsules. In general, appropriate selection of pin settings and bed height can reduce the weight variability seen, especially with poorly flowing high-dose formulations

    Selected physical and chemical properties of commercial Hypericum perforatum extracts relevant for formulated product quality and performance

    No full text
    Objective. The complex composition-activity relationship of botanicals such as St John's Wort (SJW) presents a major challenge to product development, manufacture, and establishment of appropriate quality and performance standards for the formulated products. As part of a larger study aimed at addressing that challenge, the goals of the present study are to (1) determine and compare the phytochemical profiles of 3 commercial SJW extracts; (2) assess the possible impact of humidity, temperature, and light on their stability; and (3) evaluate several physical properties important to the development of solid dosage forms for these extracts. Methods. An adapted analytical method was developed and validated to determine phytochemical profiles and assess their stability. The extract physical properties measured were particle size (Malvern Mastersizer), flow (Carr's compressibility index; minimum orifice diameter), hygroscopicity (method of Callahan et al), and low-pressure compression physics (method of Heda et al). Results. The phytochemical properties differed greatly among the extracts and were extremely sensitive to changes in storage conditions, with marked instability under conditions of elevated humidity. All extracts exhibited moderate to free-flow properties and were very hygroscopic. Compression properties varied among the extracts and differed from a common use excipient, microcrystalline cellulose. Conclusions. Three commercial sources of SJW extracts exhibited different physical and chemical properties. Standardization to 1 or 2 marker compounds does not ensure chemical equivalence nor necessarily equivalent pharmacological activity. Flow and compression properties appear suitable for automatic capsule-filling machines, but hydroscopicity and the moisture sensitivity of the phytochemical profile are concerns
    corecore